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Induction of tolerance in autoimmune diseases by hematopoietic stem cell
transplantation: getting closer to a cure?
Richard K. Burt, Shimon Slavin, William H. Burns, and Alberto M. Marmont

Hematopoietic stem cells (HSCs) are the
earliest cells of the immune system, giv-
ing rise to B and T lymphocytes, mono-
cytes, tissue macrophages, and dendritic
cells. In animal models, adoptive transfer
of HSCs, depending on circumstances,
may cause, prevent, or cure autoimmune
diseases. Clinical trials have reported
early remission of otherwise refractory
autoimmune disorders after either autolo-
gous or allogeneic hematopoietic stem

cell transplantation (HSCT). By percent-
age of transplantations performed, auto-
immune diseases are the most rapidly
expanding indication for stem cell trans-
plantation. Although numerous editorials
or commentaries have been previously
published, no prior review has focused
on the immunology of transplantation tol-
erance or development of phase 3 autoim-
mune HSCT trials. Results from current
trials suggest that mobilization of HSCs,

conditioning regimen, eligibility and ex-
clusion criteria, toxicity, outcome, source
of stem cells, and posttransplantation
follow-up need to be disease specific.
HSCT-induced remission of an autoim-
mune disease allows for a prospective
analysis of events involved in immune
tolerance not available in cross-sectional
studies. (Blood. 2002;99:768-784)
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Autoimmunity: definition

Autoimmunity arises from the pathologic reaction of B-cell–
derived antibodies and/or T cells to self-epitopes. Proof of an
autoimmune pathogenesis requires adoptive transfer of disease by
either immune cells or antibody.1,2 Transplacental or iatrogenic
transfer of autoreactive antibodies may cause disease. This condi-
tion was first shown in Harrington’s self experimentation using
plasma from a patient with idiopathic thrombocytopenic purpura
(ITP).3 Mothers with ITP, myasthenia gravis, and/or systemic lupus
erythematosus (SLE) with SSA-Ro-SSB/La immunity may transfer
antibodies to their fetus, resulting in neonatal disease.4-7Allogeneic
stem cell transplantation from donors with autoimmune disease
may also transfer the disease to recipients.8-13

Theories of tolerance

Clinical tolerance is failure of an organism to reject an antigen or
tissue without use of immune-suppressive medications but with
intact normal rejection of third-party or foreign antigens. The
oldest theory of tolerance, and now viewed as orthodoxy, is clonal
selection of lymphocyte repertoires.14 Self-reactive lymphocytes
are deleted and not allowed to mature. Clonal selection as an
explanation for tolerance was first proposed by Burnet15 in 1957 in
regards to antibody formation and self-recognition and non–self-
recognition. Subsequently, this concept was extended to selection
of T cells by deletion of autoreactive clones within the thymus.16-21

T-cell precursors emigrate from the marrow to the thymus. In the
thymus, if self-antigen of sufficient concentration and affinity for
their specific T-cell receptor (TCR) repertoires is present, the T
cells undergo apoptosis (deletion) or anergy (functional silenc-
ing).22-25 Because lymphocyte progenitors are continually gener-

ated from HSCs, clonal selection would have to be an ongoing
process occurring throughout life.

Thymic editing includes not only negative selection to delete
self-reactive clones but also positive selection to allow maturation
of self-reactive clones.17,26 If a particular TCR fails to engage a
major histocompatibility complex (MHC) peptide/complex, or
binds it too tightly, it undergoes apoptosis. If it recognizes an
MHC/peptide complex with moderate avidity, it is positively
selected and undergoes further maturation. The avidity (concentra-
tion and binding affinity) of an MHC/peptide complex appears to
play a role in positive versus negative selection of T lympho-
cytes.27,28 Intrathymic selection and anergy as a mechanism of
maintaining tolerance of autoreactive repertoires was, therefore,
amended by theories concerning peripheral tolerance.29,30

Mechanisms of peripheral tolerance revolve, in part, around the
2-signal hypothesis of self-discrimination and non–self-discrimina-
tion introduced by Bretscher and Cohn31 in 1970. T cells, positively
selected within the thymus, remain anergic unless antigen is
presented with a second signal (ie, a costimulatory signal).
Basically, antigen presentation to a T cell without costimulation
maintains anergy, whereas TCR engagement of antigen combined
with costimulation results in T-cell activation.32-35

The traditional costimulatory molecule for T-cell activation is
CD28, a ligand for B7-1 (CD80), and B7-2 (CD86) receptors on T
cells.36 CD28 binding increases transcription of interleukin 2
(IL-2).35,37A variety of other molecules, including CD40L, induc-
ible costimulator (ICOS), and various adhesion molecules, also
provide secondary or tertiary signals to facilitate T-cell activa-
tion.38-43 Requirement of costimulation for activation may place
some constraints on peripheral sites forcellular activation. Antigen-
presenting cells (APCs) that express costimulatory molecules are
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localized within secondary lymphoid tissues (spleen and draining lymph
nodes). Transfer of antigen by immune cells to secondary lymphoid
regions may be important to induce T-cell activation.44 For example,
allogeneic tissue grafts are not rejected in mice that lack secondary
lymphoid tissue.45

Besides the requirement for costimulation, a variety of mecha-
nisms maintain peripheral tolerance. Some of these mechanisms
are similar to intrathymic tolerance but occur in the periphery,
including peripheral T-cell deletion and/or anergy induced by T-cell
interaction with parenchymal cells.46,47 Other checks to maintain
peripheral tolerance include activation-induced cell death,48 suppres-
sor or regulatory cells,49-51 and peripheral antigen avidity (ie,
antigen persistence, concentration, and affinity).52,53 Theories on
peripheral tolerance explain how a T-cell repertoire selected intrathymi-
cally for reactivity to self maintains peripheral tolerance. A further
extension of tolerance to what has been termed the “danger signal”
explains the context in which costimulation arises.54

The danger metaphor proposed by Matzinger54 involves the use
of the innate immune system (neutrophils, natural killer cells, and
macrophages) to break peripheral tolerance. T-cell–mediated immu-
nity, known as adaptive immunity, is an evolutionary development
of vertebrates.55 Adaptive immunity involves the rearrangement of
a limited number of germ line genes to produce a highly diversified
repertoire of approximately 1014 to 1018 somatically mutated T-cell
(immunoglobulinlike) receptors and B-cell immunoglobulin recep-
tors. These T cells undergo deletion and anergy within the thymus.
However, the innate immune system does not have pathogen-
receptor repertoire diversity.56 Response to infection is intrinsic to a
limited number of germ-line receptor genes that recognize pathogen-
specific molecular patterns. These patterns include receptors for
conserved pathogen structures like lipopolysaccharides, mannans,
bacterial DNA, and lipoteichoic acids. Receptor-mediated phagocy-
tosis of pathogens by macrophages leads to release of proinflamma-
tory cytokines and expression of costimulation molecules, along
with MHC presentation of pathogen-derived peptides, leading to
T-cell activation. Thus, pathogen stimulation of innate immunity
can lead to activation of the adaptive immune system.57-59

In animal models, active immunization with self-epitopes
requires an adjuvant (immune stimulant) to break tolerance.
Adjuvant is often nothing more than homogenized pathogens such
as mycobacterium, which provides the danger signal for activation
of innate APCs such as macrophages. Presentation of coinjected
self-proteins by adjuvant-activated APCs initiates antigen-specific
autoreactive T cells. Once activated to self by innate immunity,
how is the adaptive immune system prevented from causing
autoimmune disease? This question may be approached by viewing
the immune system as dynamic and constantly fluctuating.

In all prior theories of tolerance, lymphocytes are viewed as
responding or not responding, like a light switch that is on or off.
The perturbation theory postulated by Grossman and Singer60 and
Grossman and Paul61,62 proposes that lymphocytes are dynamically
tuned much like a rheostat dims or brightens a room. Lymphocytes
selected intrathymically may maintain a steady tone by repeated
interaction with peripheral tissue. It is the sudden change in
dynamic homeostasis that is perceived as a perturbation. By
analogy, blood is always dynamically fluctuating between clotting
and lysis. In steady state, blood may be erroneously perceived as
static. The immune system may also be dynamically fluctuating
between autoimmunity and tolerance in a dynamic steady state not
readily appreciated. A steady state that may be controlled by clonal
selection, activation, feedback inhibition, and intracellular receptor
and signal transduction tuning. It is conceivable, but unproven, that

immune ablation followed by infusion of hematopoietic stem cells
(HSCs) may “reset the immune rheostat.”

Breaking tolerance by
environmental exposure

All processes involving tolerance, even deletion, are ongoing
recurring events and may be broken. Both central and peripheral
T-cell tolerance may be broken by environmental exposure. Classic
agents capable of breaking tolerance include drugs and
infections.63-65

Drug-induced autoimmunity

Numerous drugs may cause autoimmunity by affecting thymic
TCR antigen interaction or TCR signal events. A common drug
associated with lupuslike manifestations is procainamide.66-68 When
the metabolite procainamide-hydroxylamine is injected into the
thymus of an animal or added to primary thymic organ cultures,
chromatin-reactive T cells emerge.66 Procainamide-hydroxylamine
may alter the avidity of TCRs for self-antigen, preventing deletion
of some autoreactive T-cell repertoires.68 Cyclosporine is an
immunosuppressive medication that inhibits TCR-mediated signal-
ing. By inhibiting peripheral T-cell activation, cyclosporine sup-
presses autoimmunity but by interference with thymic TCR
signaling may also inhibit thymic deletion of autoreactive T
cells,69-72 causing a T-cell autoimmune sclerodermalike disease
termed syngeneic graft versus host disease (GVHD).72

Drug-induced disruption of central tolerance implies existence
of a functional thymus throughout adulthood. By using the
membrane protein CD45 to differentiate naive (CD45 RA) from
memory (CD45RO) T cells, thymic-dependent T-cell production
appears to diminish markedly after puberty, presumably because of
thymic atrophy. If the thymus involutes, new adult T cells would
then be derived exclusively from peripheral expansion of existing
memory cells. However, with the advent of newer DNA assays, the
accuracy of differentiation between naive and memory T cells by
CD45 has been questioned.73-75

During TCR thymic development, rearrangement of TCR genes
leads to excision of circular DNA termed T-cell receptor rearrange-
ment excision circles (TRECs).73 TRECs are episomal, unique to T
cells, and do not duplicate during mitosis. Because TCR rearrange-
ment occurs during thymic development, TRECs may be used as a
marker for recent thymic emigrants. In the early post–hematopoi-
etic stem cell transplantation (HSCT) period, there is a substantial
increase in peripheral blood TREC-positive T cells.74 Although an
inverse correlation exists between age and TREC production after
HSCT, TREC numbers increased in all age groups. Therefore,
thymic-dependent generation of T cells occurs in all ages. A drug or
environmental-related disruption of thymic tolerance, which alters
TCR antigen avidity or TCR cytoplasmic or nuclear signaling
events, may allow escape of autoreactive lymphocytes. Once in the
periphery, long-lived autoreactive cells could cause a persistent
autoimmune disease.

Infection-induced autoimmunity

An infectious agent has been associated with virtually every
autoimmune disease, including diabetes mellitus,76-79 ankylosing
spondylitis,80 multiple sclerosis (MS),81-86 myocarditis,87-89 rheuma-
toid arthritis (RA),90-96 and SLE.97 These associations are suggested
by epidemiologic studies and serology that connect disease onset or
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flare to various infectious agents, cross-reaction of virus or
pathogen epitopes and self-proteins, and occasional isolation of an
infectious agent in affected tissue.

An infection could precipitate an autoimmune disease by
breaking self-tolerance through molecular mimicry,98,99 determi-
nant or epitope spreading,100,101 or bystander activation.102 Molecu-
lar mimicry is the capacity of a lymphocyte activated to an
infectious pathogen to cross-react with a similar host determinant.
Because memory lymphocytes are long lived, the infectious agent
that initiated molecular mimicry to self does not need to persist for
autoimmunity to occur. This situation may be one reason for
difficulty in proving an infectious etiology for autoimmune disor-
ders. Bystander activation arises when activation of T cells specific
for antigen X occurs during an immune response against a
nonhomologous antigen Y. In contrast, molecular mimicry is
targeted toward self-peptides homologous to the initiating determi-
nant on a viral or other infectious agent. Immunization with
adjuvant and peptide is an example of bystander activation to the
coinjected nonhomologous peptide.103

Infection-related inflammation is associated with tissue destruc-
tion and presentation of self-epitopes, as well as up-regulation of
APC costimulatory molecules that may also lead to bystander
activation of T cells to self-determinants. Theiler murine encepha-
lomyelitis virus (TMEV)–induced demyelination, an autoimmune
demyelinating disease that mimics MS, is an example of viral-
induced bystander activation.104 TMEV is a picornavirus (small
RNA virus) that infects gray matter neurons but, through bystander
activation of the immune system, leads to an autoimmune-
demyelinating white matter disease.105

Superantigens may also cause bystander activation. Superanti-
gens are bacterial, mycoplasma, or viral proteins that activate
polyclonal groups of T cells.106-112 Polyclonal activation arises by
cross-linking the side of a MHC molecule to the V� portion of a
TCR. Superantigen binding occurs outside the MHC peptide–
binding groove and outside the TCR CDR3 antigen-specific
recognition site. Activation by superantigen results in overexpan-
sion and/or deletion of entire V� families, resulting in skewing of
the T-cell repertoire. Superantigen activation of T cells has been
suggested to initiate or cause a flare of various autoimmune
diseases, including myocarditis, diabetes, MS, and psoriasis.107

Once molecular mimicry, bystander activation, or superantigens
initiate an autoimmune disease, the immune response spreads over
time to epitopes that are distinct and non–cross-reactive to the
inducing epitope, a phenomenon termed determinant or epitope
spreading.113 Epitope spreading has been documented for both T-
and B-cell immune responses. A hierarchical order of epitope
spreading occurs according to immune dominance of the epitope.
Determinant spreading may occur to different regions on the same
protein (intramolecular epitope spread) or to a protein distinct from
the protein containing the disease-initiating epitope (intermolecular
epitope spreading). Temporal spreading of immune responses to
other epitopes has been demonstrated in numerous animal autoim-
mune disorders, including experimental autoimmune encephalomy-
elitis (EAE),114 diabetes in nonobese diabetic (NOD) mice,115 and
experimental autoimmune myasthenia gravis.116 Determinant
spreading is suspected to be associated with several human
autoimmune diseases, including MS,117 SLE,118 bullous skin dis-
eases,119 myasthenia gravis,120 diabetes,121,122 and chronic rejection
of organ allografts.123-125

The mechanism of epitope spreading may be related to costimu-
lation, because in some models blocking CD28/B7 costimulation
may prevent epitope spreading.100 Whatever the mechanism,

epitope spreading makes it difficult to retrospectively determine the
inducing epitope or antigen. Effectiveness of targeted immune
interventions directed against one TCR or epitope may be limited
by the phenomenon of epitope spreading.

Genetic susceptibility to breaking tolerance

MHC autoimmune-associated genes

MHC antigens were initially referred to as tissue transplantation
antigens. They were discovered, as the name implies (major
histocompatability complex), to have a major role in rejection of
transplanted organs. As later discovered by Zinkernagel and
Doherty,126 the MHCs are peptide-presenting molecules resulting
in MHC/peptide restriction for T-cell recognition.127 It is not,
therefore, surprising that many autoimmune diseases are associated
with particular MHC genotypes.

Numerous suspected autoimmune disorders (such as MS, RA,
spondyloarthropathies, diabetes, myasthenia gravis, Crohn disease,
primary biliary cirrhosis, autoimmune hepatitis, SLE, vasculitis,
pemphigus vulgaris, and Sjögren syndrome) are associated with
MHC alleles.128 Because combined MHC/peptide presentation is
essential for T-cell activation, a MHC association may be indirect
evidence for an immune pathogenesis. RA-prone MHC alleles,
their frequencies vary for different ethnic groups, share a similar
amino acid epitope sequence (LLEQKRAA or LLEQRRAA)
encoded by codons 67 to 74.129-131 The HLA sequence 67 to 74 is a
HLA contact site for both peptide and TCR binding. This finding
suggests HLA presentation of a common infectious or self-antigen
to T cells is involved in the pathogenesis of RA. Spondyloarthropa-
thies are linked with only some molecular subtypes of HLA-
B27.132 Similar to RA, peptide-binding differences may explain
differences in disease susceptibility. HLA-B27 may even present
its own B27-derived peptides. In which case, the putative arthrito-
genic peptide may be a component of the HLA-B27 molecule.

The autoimmune etiology for scleroderma is questionable
because of poor response to immune suppressive medications.
Similarly, scleroderma also has a relatively weak MHC association
that may indicate only partial immune pathogenesis or weak
linkage of scleroderma genes to MHC alleles or the absence of an
autoimmune etiology.133 Although MHC genes correlate with
autoimmune disease susceptibility, most patients with disease-
associated MHC genes remain disease free throughout their
lifespan. Environment and/or non-MHC genes must, therefore,
contribute toward development of disease.

Non-MHC autoimmune genes

Multiple non-MHC genes that regulate cell proliferation (onco-
genes), cell signaling (tyrosinases), immune response (costimula-
tory molecules, interleukins, and cytokines), and apoptosis (fas)
may play a role in development of autoimmunity.134 Analysis of the
diabetic-prone NOD mouse has revealed at least 18 insulin-
dependent diabetes prone genes.135 SLE occurs in various strains of
mice, including Murthy Roth lymphoproliferative (MRL/lpr) mice
and New Zealand Black X New Zealand White F1 hybrid
(NZB/NZW) mice.136 Various mating crosses of lupus-prone mice,
as well as backcrosses to normal mice, have linked murine lupus to
38 different genomic loci.137 Some loci are associated with
glomerulonephritis, others with vasculitis, some with anti-ds DNA,
some with antichromatin antibody, some with lymphoproliferation,
and others with splenomegaly. No single gene is sufficient to cause
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disease. Various combinations of SLE-prone genes among different
patients may explain why patients with SLE can have highly
variable organ involvement and clinical symptoms. Collagen-
induced arthritis in rats is a model for RA and is induced by
injection of collagen and adjuvant.138,139 At least 14 genomic
intervals or collagen-induced arthritis (CIA) loci are associated
with collagen-induced arthritis.140,141

Although autoimmunity involves MHC and numerous non-
MHC genes, environmental interactions with these genes are
essential to manifest disease. Approximately two thirds of synge-
neic twins with MS, RA, SLE, or type I diabetes are discordant for
clinical disease.142 Although a concordance rate of 33% is much
higher than the general population, it remains significantly below a
predetermined dominant Mendelian penetrance of 100% and
suggests that environmental factors continue to have a significant
role in polygenic autoimmune diseases.

Induction of tolerance by immune ablation
and autologous stem cell transplantation

Animal models and anecdotal case reports

Animal autoimmune diseases that are induced by immunization
with adjuvant or self-peptide and adjuvant may be ameliorated by
syngeneic or pseudo-autologous HSCT.143-155

Immunization with adjuvant and either myelin basic protein or
proteolipid protein peptides induces a T-cell–mediated demyelinat-
ing disease, EAE, that, depending on the animal model, may be
monophasic, relapsing-remitting with secondary progression, or
progressive from onset. EAE in Swiss Jackson Laboratory/Jackson
(SJL/J) mice is a relapsing, remitting, and secondarily progressive
disease. Several investigators have demonstrated cure, decreased
relapse rates, or decreased disease severity in EAE animals
undergoing syngeneic HSCT.146,149-151 Because of the expense of
long-term animal housing, most experiments in EAE are performed
before disease onset to abort disease initiation or shortly after
disease onset to ameliorate its course. It is unlikely that such
experiments are applicable to patients with a long duration of MS
with accumulated disease burden and tissue damage. Syngeneic
HSCT performed in mice with chronic EAE, unlike the results in
acute EAE, failed to demonstrate neurologic improvement.146

Histologic analysis revealed chronic scarring with glial prolifera-
tion that is unaffected by HSCT.146 To be effective as therapy for
EAE, HSCT needs to be performed early in the disease course
during its inflammatory stage and before accumulation of disease
burden. A principle that may also be important for MS.

Murine bone marrow transplantations are performed by killing
and removing the femur from the donor and using a syringe to flush
out the marrow cells. It is technically difficult and inhumane to
perform a murine autologous transplantation because the surviving
recipient’s legs would have to be amputated. However, marrow
could be harvested from a syngeneic donor in the same active stage
of EAE as the recipient, referred to as a pseudoautologous
transplant. HSCT of EAE using pseudoautologous donors suggests
that infused lymphocytes contaminating the graft may contribute to
relapse.147 This suggestion indicates that lymphocyte depletion of
grafts may be important in decreasing posttransplantation relapse
after autologous HSCT.

Besides immunization with myelin peptides, demyelinating
central nervous system disease may be induced with viruses such as
TMEV.156 Autologous HSCT of TMEV-induced demyelinating

disease causes a high mortality from viral superinfection of the
central nervous system during the postconditioning pancytopenic
period.156 Autoimmune disease mediated by an infectious agent can
be rapidly fatal after autologous HSCT but only if the infectious
agent is still present at the time of transplantation.

Several other environmentally induced animal autoimmune
diseases are improved or cured by syngeneic HSCT. These diseases
include experimental autoimmune myasthenia gravis,153 adjuvant
arthritis 154,155 and collagen-induced arthritis.145 Encouraging re-
sults of syngeneic and pseudoautologous HSCT in animal-induced
autoimmunity supported the design of autologous and syngeneic
HSCT trials in patients with severe autoimmune disorders.

Anecdotal case reports of patients with a coincidental autoim-
mune disease and a malignancy provided further support and
rationale for trial design.157-166 Refractory autoimmune diseases
entered remission sometimes for several years. Because the indica-
tion for transplantation was a malignancy, and the outcome was
reported retrospectively, in most cases a detailed pretransplantation
evaluation by a rheumatologist or neurologist is missing. The
autografts were usually not purged of lymphocytes, and the
transplantations were not tailored as therapy for an autoimmune
disease. Duration of response appeared shorter for RA compared
with SLE. Too few patients have been reported for other autoim-
mune diseases, and long-term results of response to treatment in
those that relapse, as well as duration of remission in those who had
not relapsed, remain unknown.

Mobilization of HSCs

Collection of stem cells from patients with autoimmune diseases is
based on methods already established for patients with nonautoim-
mune disorders. The complications and risks of the procedure
appear greater in patients with autoimmune disease and are specific
for the autoimmune disease and involved organ system.167 The
most common peripheral blood stem cell (PBSC) mobilization
regimens are single-agent granulocyte colony-stimulating factor
(G-CSF) or cyclophosphamide and G-CSF.

Flares of MS and RA have occurred while patients were taking
G-CSF for mobilization.167,168 MS flares have resulted in serious
and irreversible neurologic deterioration. G-CSF–related flares of
RA are relatively mild, being manifest as a transient increase in the
number of swollen or tender joints that resolves with or without an
increase in corticosteroid dose.167 The only complications of
G-CSF PBSC mobilization in patients with scleroderma are
transient telangiectasia that spontaneously resolves.167 In other
diseases, such as SLE, there exists virtually no data on PBSC with
G-CSF as a single agent. The simultaneous administration of
G-CSF and steroids has been used in a limited number of patients
without disease exacerbation.169

To prevent G-CSF–related disease flare, combined cyclophos-
phamide and G-CSF (Cy/G-CSF) may be used for mobilization.
However, combined Cy/G-CSF PBSC mobilization has been
complicated by neutropenic-related infection and disease-specific
fatal visceral organ toxicity.167 Infections with opportunistic organ-
isms may be more common in patients who have been on high-dose
corticosteroids for prolonged intervals, such as patients with
refractory SLE. Scleroderma patients with cardiac and/or pulmo-
nary involvement undergoing PBSC with 4.0 g/m2 cyclophospha-
mide have succumbed to cardiac arrest and/or pulmonary alveolar
hemorrhage.167 No significant regimen-related organ damage has
been reported at doses of 2.0 g/m2 or for doses of 4.0 g/m2 in
nonscleroderma patients. This finding emphasizes the importance
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of adjusting the mobilization regimen based on disease and organ
involvement for the minimum mobilization-related morbidity.

Although cyclophosphamide-based mobilization is generally
associated with more toxicity from infection or organ damage,
autoimmune diseases are generally ameliorated by the immune
suppressive effects of cyclophosphamide.167 The duration of im-
provement from cyclophosphamide-based PBSC mobilization is
unknown because most patients proceed within a relatively short
time interval from mobilization to HSCT. As an exception, in at
least one autoimmune disease (Evans syndrome), cyclophospha-
mide-based PBSC resulted in rapid and fatal acceleration of di-
sease activity.170 This acceleration was attributed to a rapid cyclo-
phosphamide-induced suppression of otherwise compensatory and
accelerated hematopoiesis in the presence of persistent peripheral
destruction from residual immunoglobulins against red blood cells
and platelets.

There is no single optimal mobilization regimen for PBSC in
patients with autoimmune disease. The PBSC method should be
individualized for the disease and organ system involved. Newer
mobilizing agents such as stem cell factor, thrombopoietin, chemo-
kines, and/or high-dose corticosteroids and G-CSF need to be
evaluated to collect progenitor stem cells with minimum mobiliza-
tion-related morbidity.

After collection of progenitor cells, most but not all centers
perform ex vivo lymphocyte depletion.167 Because the existence or
identity of suppressor cells remains vague, graft depletion tech-
niques are nonspecific without attempts at conserving regulatory
cells. Positive enrichment for CD34� cells has been performed by
using either CEPRATE (CellPro, Bothel, WA), Isolex (Nexel, Irvine,
CA), or CliniMACS (Miltenyi, Bergish Gladbach, Germany) cell
separation systems. Negative selection was performed with T-cell
antibodies by e-rosette or Nexel Isolex CD4/CD8 selection.

Insufficient clinical data are currently available to compare an
unmanipulated versus a T-cell–depleted graft in terms of disease
response or relapse. Aggressive lymphocyte depletion may ad-
versely affect immune reconstitution against pathogens, increasing
the risk of serious posttransplantation opportunistic infections such
as cytomegalovirus, fungemia, Pneumocystis carinii pneumonia,
or Epstein-Barr virus posttransplantation lymphoproliferative di-
sease (PTLD).

Conditioning regimens and the role of immunosuppressive
versus myeloablative conditioning for reinduction
of self-tolerance

The first convincing evidence that intense immunosuppression may
cure life-threatening autoimmune diseases was obtained in a
patient with mixed cryoglobulinemia in end-stage renal failure with
a cryocrit level of 60%.171 In the early 1970s, a patient with
monoclonal immunoglobulin (Ig)M and polyclonal IgG was treated
with a combination of cyclophosphamide and azathioprine. Treat-
ment was complicated by lymphocytopenia and sepsis because of
neutropenia, but the patient recovered with no stem cell support.
After recovery, renal function normalized in parallel with elimina-
tion of the cryoglobulinemia, and the patient is alive and disease
free for more than 25 years.171 This case represents the longest
observation of a patient with reinduced self-tolerance after elimina-
tion of self-reactive lymphocytes and reestablishment of immunity
from uncommitted stem cells.

Brodsky et al172 extended this early observation by treating a
variety of autoimmune diseases with high-dose cyclophosphamide
(200 mg/kg) without HSC infusion.172 For some autoimmune
diseases such as SLE, early results from high-dose cyclophospha-

mide without stem cell support are encouraging. Although the
response rate is high, depending on disease, relapse is common.
With the exception of some diseases such as SLE, a more intense
and myeloablative regimen with stem cell support may be required
for durable responses. Infusion of mobilized HSCs shortens the
duration of neutropenia by 5 to 7 days, theoretically decreasing the
risk of serious infections. Ex vivo expansion of HSCs before
infusion may completely eliminate neutropenic-related infections.
For these reasons, a trial that randomized between cyclophospha-
mide with or without stem cell support is not currently being
planned, and the rest of this review will be devoted to immune
suppression with HSC support.

Ideally, the conditioning regimen should be able to eliminate
immune cells without neutropenia. Such a regimen does not exist.
The more immune ablative a regimen becomes, the more likely it is
to be myeloablative and require stem cell support for reconstituting
hematopoiesis. The conditioning regimens being used in autoim-
mune transplantations were empirically developed for use in
malignancies. Autoimmune conditioning regimens include cyclo-
phosphamide (Cy)173-177; cyclophosphamide and polyclonal antilym-
phocyte antibodies such as antithymocyte globulin (ATG) or
humanized monoclonal rat antihuman CD52 (Campath-1H) antibod-
ies (Cy/ATG or Cy/Campath-1H, respectively)178-188; carmustine,
etoposide, cytarabine, and melphalan (BEAM) 189-192; cyclophos-
phamide and total body irradiation (Cy/TBI)193; cyclophospha-
mide, TBI, and antithymocyte globulin (Cy/TBI/ATG)194,195; busul-
fan and cyclophosphamide (Bu/Cy)196,197; busulfan, cyclophosphamide,
and ATG (Bu/Cy/ATG)198; cyclophosphamide and thiotepa (Cy/
TT)199,200; and fludarabine-based regimens.

Cy or Cy/ATG is the most common conditioning regimen used
for HSCT of SLE.181-184,188 Pulse cyclophosphamide (500-1000
mg/m2) is a standard treatment for SLE. It is, therefore, reasonable
to escalate cyclophosphamide to transplantation doses as the
conditioning regimen for SLE. To avoid cardiac injury, transplanta-
tion doses of cyclophosphamide are limited to 200 mg/kg usually
divided into 50 mg/kg per day. Cyclophosphamide is often used to
mobilize stem cells before HSCT at doses of 2.0 to 4.0 g/m2. If
cyclophosphamide is used in both the mobilizing and conditioning
regimen, either the conditioning regimen dose may be decreased or
the time interval between mobilization and HSCT may be delayed
by several weeks to minimize the risk of cardiac toxicity from total
cyclophosphamide dose. When the conditioning dose of cyclophos-
phamide is decreased, some centers add another agent such as
thiotepa.199,200 Most patients with SLE eligible for HSCT are
corticosteroid dependent and markedly cushingoid. There is a
marked discrepancy between ideal and actual weight in terms of
calculating cyclophosphamide dose. For safety reasons, in cushin-
goid patients, the dose is generally based on ideal or an adjusted
ideal rather than actual weight.

Cy and Cy/ATG are conditioning regimens for sclero-
derma176,187,188 and RA.173-175,180 High-dose cyclophosphamide may
be associated with high cardiopulmonary mortality in patients with
scleroderma.167 Volume shifts and infections that stress cardiovas-
cular reserve are the likely culprit of HSCT-related cardiopulmo-
nary collapse in scleroderma-associated pulmonary artery hyperten-
sion. In RA, organ function is generally normal, and cyclophosphamide-
related toxicity is less problematic. The toxicity of a conditioning
regimen, therefore, depends on the disease and disease-related organ
dysfunction.

Bu/Cy regimens have been used in a limited number of HSCTs
for MS197 and RA.196 Busulfan is fat soluble and readily crosses the

772 BURT et al BLOOD, 1 FEBRUARY 2002 � VOLUME 99, NUMBER 3

For personal use only.on July 4, 2019. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


blood-brain barrier to the site of MS plaques. Busulfan is adminis-
tered orally with variability in absorption and first-pass hepatic
metabolism. Busulfex is an intravenous formulation that gives
more uniform and less toxic serum levels. For RA, it may be
equally important for efficacy that the conditioning regimen target
not only lymphocytes but also synovial macrophages. Theoreti-
cally, HSCT results may be improved in RA by adding a more
effective antimacrophage agent such as busulfan to a cyclophospha-
mide-based regimen.201 There are special concerns about the use of
Bu/Cy in RA and MS. Patients with RA may have disease-related
interstitial pneumonitis with little reserve for busulfan-related lung
injury. The effects of alkylating agents on demyelinated neurons
are unknown. In MS, the neurotoxicity of high-dose alkylating-
based conditioning regimens remains unknown.

BEAM and Cy/TBI are common lymphoma regimens being
used to treat MS.189-191,193 TBI was selected because, unlike most
agents, radiation readily crosses the blood-brain barrier. To avoid
TBI-related pulmonary injury, radiation is generally given in the
anteroposterior and posteroanterior position with 50% lung blocks
with full dose to the mediastinal lymph nodes and spinal cord. A
comparison of BEAM versus Cy/TBI regimen-related toxicity has
not been performed. In general, TBI regimens are not used in RA
because trials of nonmyeloablative total nodal irradiation in RA
were associated with unexpected late complications such as
myelodysplasia.202

Cy/TBI/ATG has been used as a conditioning regimen in the
United States for scleroderma195 and MS,169 and in Europe for
juvenile chronic arthritis (JCA).194 For patients with pulmonary
scleroderma, TBI without lung shielding has been associated with
lethal pulmonary deterioration.195 If attenuated with partial lung
shields, TBI-related scleroderma lung injury appears less likely.
Cy/TBI/ATG has been associated with lethal PTLD.358 The investi-
gators attributed PTLD to use of high-dose rabbit ATG. Lower and
less immune-suppressive doses of rabbit ATG or the use of horse
ATG has not been reported to cause PTLD in autoimmune diseases.

Independent of the conditioning regimen (Cy or Cy/TBI/ATG),
when combined with aggressive T-cell depletion, HSCT in JCA has
been complicated by lethal macrophage activation syndrome
(MAS), manifesting as fever, lymphadenopathy, hepatospleno-
megaly, and disseminated intravascular coagulation.186 MAS is a
reactive hematophagocytic lymphohistiocytosis and has been
associated with JCA independent of HSCT.203 The diagnosis is
confirmed on bone marrow aspirate by macrophages (or histio-
cytes) actively phagocytosing hematopoietic cells and may arise
from immune dysregulation perhaps in response to viral infections.
To date, posttransplantation MAS appears to be a complication
unique to JCA.

No reports exist of late regimen-related organ toxicity from
HSCT in autoimmune diseases. All patients need to be warned of
infertility and of regimen-specific late toxicities such as cataracts
from TBI. Late malignancies are also possible.204 Similar to
mobilization regimens, conditioning regimens must be uniquely
designed for the disease, organ impairment, disease-specific in-
fection susceptibility, and extent of prior immune suppressive
medication–related infectious risk to ensure minimum regimen-
related mortality.

Mortality

Transplantation-related mortality (TRM) for all autoimmune dis-
eases has been reported to be 8.6%.205 TRM is disease specific, in
order of highest to lowest TRM: scleroderma, SLE, MS, and RA.
This mortality is higher than expected because of phase 1 trials that

selected patients with advanced end-organ dysfunction and/or
active and refractory disease. Judicious selection of patients earlier
in disease or in remission, but with a high risk of relapse or further
progression, will diminish TRM. Variability in TRM based on the
center performing the transplant, also known as the center effect,206

may be occurring for autoimmune diseases. Many factors affect
TRM, including patient selection, supportive care, conditioning
regimen, degree of lymphocyte depletion of the graft, use of
disease-specific versus generic protocols, and so forth. A lower
mortality in centers dedicated to autoimmune HSCTs may be
obscured within the variability of multicenter registry data.

Posttransplantation immunization

After HSCT, a patient’s titer from prior immunizations (eg,
diphtheria, measles, tetanus, hepatitis B, etc) is often low or
undetectable. As discussed in the “Breaking tolerance by environ-
mental exposure” section, immunization could, theoretically, rein-
duce autoimmune disease. The risk of relapse may vary according
to the type of immunization. For example, there was concern that
onset and flare of MS may be associated with hepatitis B
vaccination, although recent studies have shown no association.207

Although the risk of infection-related mortality or infection-
induced autoimmunity in a nonimmunized individual probably
outweighs any theoretical risk of immunization-induced disease
relapse, guidelines on posttransplantation vaccination in autoimmu-
nity have yet to be written.

Specific diseases

MS, SLE, RA, and scleroderma will be discussed further because
phase 3 autologous HSCT trials are being prepared in these
diseases. In Europe, the European Bone Marrow Transplant/
European League Against Rheumatism (EBMT/EULAR) autoim-
mune committee is designing these trials. In the United States, the
trials are funded by the National Institutes of Health and are being
designed by disease-specific working groups composed of trans-
plant physicians, rheumatologists, and neurologists.

Autologous HSCT for MS

MS is a relatively common North American and European disease
with a prevalence of approximately 1 in 1000 people.208 It is at
onset an immune-mediated disease confined to the central nervous
system. The disease is characterized by a variable course.209-211

Patterns are (1) relapsing-remitting MS defined as relapsing disease
without progression between relapses with or without residual
neurologic deficits from each relapse, (2) secondary progressive
MS defined as continuous (often insidious and steady) neurologic
deterioration with or without superimposed relapses after an initial
relapsing-remitting course, and (3) primary progressive MS de-
fined as steady continuous deterioration from onset. At onset,
approximately 15% of the cases are primary progressive and 85%
are relapsing-remitting.209-211 Within 10 years, 50% of relapsing-
remitting cases become secondary progressive, and by 25 years,
90% have progressive disease. Relapse frequency in the first year
of diagnosis influences time interval to disability.209-211 The median
time to difficulty ambulating without unilateral assistance (an
extended disability status score [EDSS] of 6.0) is 7 years for 5 or
more relapses; 13 years for 2 to 4 relapses; and 18 years for 1 to
2 relapses.

Accepted immune-modulating agents for MS are interferon beta
(Avonex, Betaseron)212-216 or Copaxone (copolymer 1 or glatiramar
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acetate)217,218 known as ABC therapy. Avonex and Betaseron are
different formulations of interferon-� and Copaxone is an oral
mixture of random peptide sequences containing L-glutamate,
L-lysine, L-alanine, and L-tyrosine, thought to mimic myelin
peptides. The ABCs of MS therapy are approved for relapsing-
remitting disease and, although not approved by the U.S. Food and
Drug Administration (FDA), are often used for progressive forms
of MS. The immune suppressive chemotherapy drug mitoxantrone
received FDA approval for secondary progressive and progressive-
relapsing MS.219,220 The need for new interventions in MS is
evident from the desperation of patients who in some studies have a
higher suicide rate compared with the general population.221

Natural history magnetic resonance imaging (MRI) studies have
demonstrated that neurologic progression can continue despite lack
of new demyelinating events on MRI.222,223 Although early relapse
frequency within the first year of diagnosis appears to correlate
with onset of late disability, Confavreux et al224 reported that
relapse frequency in disease of longer duration and EDSS scores
more than 4.0 do not correlate with disability. This finding indicates
that treatment designed to prevent relapses (ie, immune-modulat-
ing therapy) used late in disease is probably not adequate to prevent
progressive disability. Demyelination alone does not adequately
explain the progressive disability that occurs in patients with
progressive MS. Yet, the most important therapeutic goal is to
prevent disability and maintain neurologic function. An evolving
amount of literature on MS supports the concept that, although
initially an inflammatory demyelinating disease, MS transitions
into or is also an axonal degenerative disease.225-228

HSCT for MS was suggested in 1995.229 In general, initial
HSCTs were phase 1 studies and captured patients with progressive
disease and high disability (EDSS) scores189-191,230-233 (Table 1).
The Thessaloniki group has reported a 3-year progression-free
survival for primary progressive MS (39%), which appears signifi-
cantly lower than for secondary progressive (92%).190 In an Italian
study, Mancardi et al231 reported 10 subjects undergoing HSCT
followed with a frequent MRI protocol who demonstrated lack of
enhancing lesions and accumulation of T2 burden of disease over
an observation period of 4 to 30 months. A second study with a
5-year follow-up has noted a discordant response between MRI and
clinical results.230 Some patients had clinical progression of
disability, defined as an increase in the EDSS by one or more points
but no new attacks or change on MRI in terms of T2 disease
burden. The patients whose EDSS increased despite lack of MRI
changes had significant pretransplantation disabilities (EDSS of 7.0
to 8.5). Although longer follow-up is necessary, it appears that
HSCT slows or halts acute attacks and further immune-mediated
demyelination but not progressive disability, especially in disease
of increasing duration or higher disability scores.

Two possible phase 3 MS trial designs are being proposed to run
simultaneously. For secondary progressive MS, the trial would be
aimed at suppressing relapses in patients with progressive disabil-
ity. Patients with accumulated baseline deficits, but still inflamma-
tory disease, could be considered candidates. This group could
include ambulatory patients with an EDSS of 3.5 to 6.0 and
continued relapses (or MRI evidence of active disease) randomized
between a TBI and Cy regimen with or without low-dose ATG and
CD34-selected HSCs versus mitoxantrone every 3 months for 2
years. However, suppression of relapses may be insufficient to halt
progressive neurologic impairment, particularly as the duration of
disease and the level of disability increase.

For relapsing-remitting MS, the protocol would be aimed at
suppressing relapses in patients at risk for progressive disability.
Patients with relapsing-remitting disease who have failed inter-
feron may be randomized between cyclophosphamide (200 mg/kg,
with or without low-dose ATG) with CD34-selected HSC support
versus best standard therapy (ie, continued interferon or interferon
and adjuvant immunotherapy) (azathioprine, methotrexate, mito-
xantrone, or cyclophosphamide). Because patients in this study
would be earlier in the disease course, a safer conditioning regimen
that does not include TBI would be indicated. Efficacy of earlier
intervention in MS is supported by the Controlled High-risk
Subjects Avenox Multiple Sclerosis Prevention Study (CHAMPS),
in which over a 3-year interval treatment with interferon after the
first clinical event significantly lowered the probability of develop-
ing clinically definite MS.234 If early intervention before onset of
progressive disease is important in preventing late disability, a safe
but intense immune suppressive regimen might be indicated in
patients with relapsing-remitting MS who have failed interferon.

Although the primary outcome of these trials would be progres-
sive disability defined by the EDSS, other outcome measures
would include clinical status by the Neurologic Rating Scale and
Multiple Sclerosis Functional Composite, measurement of accumu-
lated atrophy on MRI of the brain and cervical spinal cord, and
potentially measures of whole brain N-acetyl-aspartate on mag-
netic resonance spectroscopy that reflects neuronal and axonal
integrity.

Autologous HSCT for SLE

Although studies have suggested that SLE encompasses several genetic
diseases with some clinical commonalties,235,236 the disease will be
considered here as a single entity with protean clinical expressivity.237,238

SLE has an overall prevalence that has varied from 12 to 50.8 cases per
100 000 persons.239 Survival has improved dramatically, reaching a
90% 10-year survival and a 70% 20-year survival in the 1990s. Within

Table 1. Results of autologous/syngeneic hematopoietic stem cell transplantation in patients with multiple sclerosis

Group No. of patients* EDSS baseline Regimen Progressed
Follow-up, mo,
median (range)

Treatment-
related deaths

Fassas et al190,191 24 6.0 (4.5-8.0) BEAM � ATG 5/23 40 (21-51) 1

Burt et al179,193,230 27 7.0 (3.0-8.5) Cy/TBI 4/25 14 (2-58) 0

Nash et al169 20 7.0 (5.0-8.0) Cy/TBI/ATG 2/13 5 (3-24) 1

Carreras et al232 10 6.2 (5.0-6.5) BEAM � ATG 2/10 18 (16-32) 0

Kozak et al189 8 6.5 (6.5-7.5) BEAM � ATG 1/8 8.5 (1-16) 0

Openshaw et al197 5 6.5 (5.5-7.5) BU/Cy � ATG 1/4 18 (17-30) 2

Mandalfino et al233 1 (identical twin) 6.5 Cy/TBI 0/1 26 0

EDSS indicates extended disability status score; BEAM, carmustine, etoposide, cytarabine, melphalan; ATG, antithymocyte globulin; Cy/TBI, cyclophosphamide and total
body irradiation; and BU/Cy, busulfan and cyclophosphamide.

*Actual patient number is based on updated communication with the author and may be higher than the number reported in the reference.
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the first 5 years, the main cause of death is active disease (neurologic,
renal, systemic) or infection. Thereafter, causes of death tend to be
infectious or cardiovascular events (strokes and/or myocardial infarc-
tion) related to hypertension and hyperglycemia/hypercholesterinemia
because of chronic corticotherapy.

Three consecutive but separable levels of etiology, ethiopatho-
genesis, and pathogenesis have been considered for SLE.240 It has
been thought imperative to identify the specific molecular defects
as the only way to design and use any novel and rational
treatments.241 In practice, however, SLE is treated with a variety of
drugs, mainly immunosuppressive, that have been discussed
recently.242 Along with corticosteroids, intravenous pulse cyclo-
phosphamide has been used in a National Institutes of Health–
developed protocol specifically directed toward lupus nephropathy.243

At the pinnacle of the lupus iceberg, however, there are cases of
refractory-relapsing (“intractable”) 244 disease. For such patients,
following the considerable experimental evidence discussed for-
merly and also on the basis of serendipitous case reports of
coincidental diseases, HSCT was proposed in 1993.245 Several
cases of concomitant SLE and malignancy have been treated with
HSCT and published. They include chronic myeloid leukemia/
SLE,166 non-Hodgkin lymphoma (NHL)/SLE,157 and Hodgkin
disease/SLE.160 The first patient eventually died of his leukemia
without any evidence of active SLE. In another case, the NHL did
not relapse, but ITP supervened in conjunction with an anticentro-
mere antibody.163

The first patient with SLE received a transplantation of her own
T-cell–depleted marrow in 1996.199 The first report on HSCT for
SLE in the United States was published 1 year later in 1997.183

There are now several fully published case reports of nonconcomi-
tant SLE patients having undergone HSCT (Table 2).181-184,192,199,246

All received transplantations of cyclophosphamide and G-CSF–
mobilized CD34� cells, and conditioning regimens varied from
Cy/TT to Cy/ATG (200 mg) to BEAM. All patients reached
complete remission, but in several there was a serologic antinuclear
antibody (ANA) relapse after 2 to 3 years from transplantation. In
the patient with the longest posttransplantation follow-up, after 3
years of corticoid-free remission, there was a reappearance of
ANA/DNA antibodies, and, after another year, there was also a
mild proteinuria, which is currently being treated with a combina-
tion of corticosteroids and mycophenolate mofetil.247

In the most extensive single-center clinical study published to
date,181 9 patients underwent stem cell mobilization with cyclophos-
phamide 2.0 g/m2 and G-CSF 10 �g/kg. Two patients were
excluded from transplantation because of infection (one death from
disseminated mucormycosis), and 7 received autotransplantations
after conditioning with cyclophosphamide (200 mg/kg), 3.0 g

methylprednisolone, and 90 mg/kg equine antithymocyte globulin.
All patients were seriously ill, with SLE disease activity indices of
17 to 37, including 1 case with alveolar hemorrhage and 4 with
World Health Organization class III-IV glomerulonephritis and
nephrotic syndrome. Lupus remained in clinical remission, and
ANA became negative in all patients with 1 to 3 years of
posttransplantation follow-up.

Phase 3 trials are being designed in the United States to
compare autologous HSCT with a control arm. The standard of
care for the control arm has generated a great deal of discussion
and controversy within the working group. Potential controls
could be intravenous pulse cyclophosphamide, oral cyclophos-
phamide, mycophenolate mofetil, or an open control of best
available care. American experience with oral cyclophospha-
mide or mycophenolate mofetil in SLE is limited. Pulse
cyclophosphamide (500-1000mg/m2) has a long track record
and is generally considered the standard of care. If HSCT
candidates are selected for failure to pulse cyclophosphamide, it
is difficult to continue failed therapy as on the control arm. One
solution is to offer HSCT earlier in disease. Eligible patients
with nonrenal visceral involvement need only fail corticoste-
roids and 3 months of pulse cyclophosphamide. For patients in
whom the indication is nephritis, active disease must be present
despite at least 6 cycles of monthly pulse cyclophosphamide.
Enrolling patients earlier in disease who are less ill would also
decrease the morbidity and mortality of HSCT. A second
solution is to allow patients enrolled on the pulse cyclophospha-
mide arm who continue to fail to crossover to HSCT.

Numerous SLE disease activity indices exist to measure
disease activity including the British Isles Lupus Assessment
Group scale (BILAG),248 Systemic Lupus Erythematosus Dis-
ease Activity Index,249 Systemic Lupus Activity Measure,250 and
the Lupus Activity Index.251 The index used depends on
institutional and investigator familiarity. In the American phase
3 trial of HSCT for SLE, the disease activity instrument will be
the BILAG. BILAG is one of the more useful instruments for
characterizing disease stage because BILAG score correlates
with necessity to treat and has been validated as an instrument to
measure disease activity.252,253 The evaluation is based on a
5-category classification, characterizing the degree of symptoms
attributed to active lupus for 86 questions based on the patient’s
history, examination, and laboratory results. The 5 categories of
response are the following: not present, improving, same, worse,
and new. The 86 questions are grouped into the following 8
systems: general, mucocutaneous, neurologic, musculoskeletal,
cardiovascular and respiratory, vasculitis, renal, and hemato-
logic. For each of the 8 systems, a severity grade (A to E) is

Table 2. Results of autologous hematopoietic stem cell transplantation in patients with systemic lupus erythematosus

Reference
No. of patients

receiving transplants Regimen Results Mortality

Marmont et al199 1 TT/Cy Clinical remission for more than 3 y, serologic

relapse

0

Burt et al179,183

Traynor et al181

9 Cy/ATG Clinical remission for up to 4 y, 2 relapsed at 3 y

and 3.5 y, respectively

1/12 mobilized

Fouillard et al192 1 BEAM Clinical remission for 1 y; ANA negative at 6 mo

but positive at 9 mo

0

Rosen et al188 3 Cy/ATG Complete remission of active disease 0

Musso et al185 1 Cy/ATG Posttransplantation low ANA titer and low

Coombs positive at 8 mo but anti-ds DNA

negative and anticardiolipin antibody negative

0

TT/Cy indicates thiotepa and cyclophosphamide; Cy/ATG, cyclophosphamide and antithymocyte globulin; BEAM, carmustine, etoposide, cytarabine, melphalan; ANA,
antinuclear antibody; and anti-ds, anti–double strand DNA antibody.
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calculated according to the scores. The following list indicates
interpretation of each of the grades for each system: A, disease
is active enough to need treatment; B, disease has the potential
to need treatment soon; C, disease currently does not meet
grade A or B criteria; D, disease has satisfactorily resolved; and
E, disease has never been involved. Because a crossover arm
is tentatively planned in the American phase 3 trial, the primary
endpoint will be need to treat as defined by a BILAG grade A.

Autologous HSCT for RA

RA affects 1% of the North American population.254 It is an
immune-mediated disease that involves joint synovium with forma-
tion of an inflammatory pannus that erodes cartilage and bone.255

The characteristic joint lesion in RA includes an increase in the
numbers of both fibroblastlike and macrophagelike synoviocytes in
the synovial intimal lining, infiltrating lymphocytes, plasma cells,
monocytes, and macrophages. T cells comprise about 30% to 50%
of synovial tissue cells. Synovial T cells have been demonstrated to
have a restricted repertoire256,257 and to react to a variety of
microbial antigens258 and self-antigens such as type II collagen
epitopes.259 Synovial macrophages produce IL-1 and tumor necro-
sis factor � (TNF-�).260 RA fibroblastlike synoviocytes can prolif-
erate in an anchorage-independent manner, escape contact inhibi-
tion,261 aggressively invade into cartilage when coimplanted into
severe combined immune deficient mice,262 and have somatic
mutations of the p53 tumor suppressor gene.263 These complexities
underscore the shortcomings of previous approaches designed to
eliminate only one set of immune cells.

The most common rheumatoid symptoms are joint pain,
swelling or deformity, morning stiffness, elevated sedimentation
rate, and a positive rheumatoid factor. Extra-articular symptoms
may occur, including rheumatoid nodules, vasculitis, and pulmo-
nary interstitial fibrosis.264,265 Patients with more than 20 to 30
involved joints have a 5-year mortality of 40% to 60%.266-275

Despite newer therapeutic agents like anti-TNF drugs, about 5% to
10% of patients with RA continue to have a desperate need for
better and more definitive therapies.276 Because RA may be
associated with significant morbidity, oncogene mutation, loss of
synoviocyte growth inhibition, and, in some patients, high mortal-
ity, it is perhaps surprising that it was not until 1997 that the first
HSCT for RA was reported from Australia173 and the first American
HSCT for RA reported in 1998.180

In general, the procedure has been well tolerated without
mortality (Table 3). HSCT offers an almost immediate relief of
symptoms. Patients become pain free, sometimes for the first time
in years. Activities required for daily living, such as buttoning a
shirt or combing hair, rapidly return to normal. Morning stiffness
resolves, rheumatoid nodules disappear, sedimentation rate normal-

izes, and rheumatoid factor may disappear. Although these studies
demonstrated that high-dose cyclophosphamide was well tolerated
with marked improvements (American College of Rheumatology
[ACR] 50 or ACR 70), a complete remission was unusual and
relapse within 1 to 2 years is common.173,175,180,277,278 There are
suggestions of a dose-response effect. A dose escalation study of
cyclophosphamide at 100 mg/kg revealed transient 1- to 2-month
responses but at 200 mg/kg response duration increased to 18 to 20
months.174 Too few myeloablative transplantations, for example a
busulfan and cyclophosphamide regimen, have been performed to
determine if durable remissions are feasible.

For an intense and expensive treatment such as HSCT to be
considered for RA, sustained complete remissions or 70% improve-
ment as defined by the ACR (ACR 70) must be achieved.279 Several
modifications are being considered, including the use of the cur-
rent easily tolerated nonmyeloablative yet highly immunosup-
pressive regimen with posttransplantation immune modulation, eg,
a TNF inhibitor, cyclosporine A, and/or methotrexate; or the use of
a more intense myeloablative regimen such as busulfan and
cyclophosphamide.

A European approach being proposed for phase 3 trials uses the
current cyclophosphamide mobilization (2.0 to 4.0 g/m2) and
cyclophosphamide conditioning (200 mg/kg) with posttransplanta-
tion immune modulation. The nontransplant arm will be cyclophos-
phamide mobilization only followed by maintenance methotrexate
(John Snowden, verbal communication, May 2001). This approach
assumes that RA is not curable but is more easily controlled with
conventional therapies after HSCT. Continued posttransplantation
immune suppression may increase the risk of posttransplantation
opportunistic infections. The Australians, rather than comparing
HSCT with another therapy, are randomizing patients with RA to
HSCT with or without T-cell depletion of the autograft. The
American and Israeli approach is to pilot phase 1/2 autologous
HSCT studies by using more intense myeloablative regimens
(fludarabine plus oral busulfan or intravenous Busulfex and
cyclophosphamide) in the hope of inducing more durable remis-
sions, while simultaneously developing mini-allogeneic HSCT
protocols for patients with HLA-matched siblings.

Autologous HSCT for scleroderma

Scleroderma is a rare disorder with a prevalence of anywhere from
2 to 100 per one million people.280 Two subsets of scleroderma are
generally recognized, limited and extensive cutaneous sclero-
derma. Limited cutaneous scleroderma is characterized by cutane-
ous involvement of acral areas (hands, face, feet, forearms) but not
the trunk. Limited scleroderma generally has a good prognosis.
Diffuse cutaneous scleroderma is characterized by truncal and acral

Table 3. Results of autologous hematopoietic stem cell transplantation in patients with rheumatoid arthritis

Reference No. of patients Conditioning Comment Mortality

Joske et al173 1 Cy Marked improvement at 6 mo follow-up 0

Snowden et al174 8 Cy Cohort I, cyclophosphamide 100 mg/kg-response for 1-2 mo 0

Cohort II, cyclophosphamide 200 mg/kg, improved for 17-19 mo

Burt et al179,180 4 Cy/ATG Marked improvement up to 18 mo but 2 relapsed 0

Pavletic et al178 2 Cy/ATG Relapsed at 5 and 7 mo 0

Durez et al196 1 BU/Cy Remission � 10 mo 0

McColl et al175 1 Cy/ATG (identical twin) Remission � 24 mo 0

Munro et al278 1 N/A Marked improvement for 1 y 0

Verburg et al277 12 Cy Marked improvement in 8/12 patients with follow-up, ranging from 7-21 mo 0

Cy indicates cyclophosphamide; Cy/ATG, cyclophosphamide and antithymocyte globulin; BU/Cy, busulfan and cyclophosphamide, and N/A, not applicable.
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skin involvement and early visceral (lung, renal, cardiac, gastroin-
testinal) involvement. For all patients with diffuse scleroderma,
5-year mortality is 25% to 30%.281 High skin scores,282 pulmonary,
renal, or cardiac involvement is associated with a higher mortality
of 40% to 50% within 5 years.282-286

Scleroderma is characterized by fibrosis (ie, excessive deposi-
tion of collagen in skin and visceral organs). The etiology of
scleroderma is unclear, and an autoimmune pathogenesis remains
controversial. Unlike MS, RA, and SLE, the MHC association is
weak.287,288 Randomized trials of D-penicillamine, interferon-�, or
methotrexate either are no better than placebo or improve skin
score with little beneficial effect on visceral organ function.289-291

An exception is pulse intravenous cyclophosphamide, which
appears to ameliorate scleroderma-related pulmonary alveolitis.292

Scleroderma may be a vasculopathy, connective tissue disorder,
and/or immune-mediated disease. Raynaud phenomena, nail fold
capillary abnormalities, and elevated plasma von Willebrand
antigen are indications of a vasculopathy with endothelial injury
that may secondarily lead to ischemia and fibrosis.293-295 Sclero-
derma may be a connective tissue disease. The tight skin mouse,
which is an animal model for scleroderma, is a genetic connective
tissue disease because of a defect in the fibrillin 1 gene.296-298

Support for an immune-mediated etiology include a variety of
autoantibodies, including antitopoisomerase (Scl-70) antibod-
ies,299,300 and anticentromere antibodies.301 Chronic GVHD is an
immune-mediated disorder that is clinically and histologically
similar to scleroderma.302-304 Similar to scleroderma, chronic
GVHD is associated with tissue fibrosis and is slow to respond to
immune suppression. GVHD is caused by allogeneic lymphocytes,
and patients with scleroderma have been reported to have an
increased incidence of allogeneic hematopoietic cellular microchi-
merism.305 Transplacental transfer of fetal lymphocytes to the
mother may lead to mixed chimerism in postpartum females.306

Transplacental transfer of maternal lymphocytes to the fetus may
cause mixed chimerism in males and nonparous females. Similar to
scleroderma, GVHD is also associated with endothelial damage
and elevated von Willebrand antigen.307 The perceived failure of
immune therapies in both chronic GVHD and scleroderma may be
due to neglect in recognizing or effectively treating an early
inflammatory phase. Late fibrotic processes may progress and
regress more slowly.

Regardless of etiology, because of its poor prognosis and lack of
effective therapies, patients with scleroderma are being enrolled in
HSCT protocols.176,195 Early results indicate improved skin scores
and activities of daily living but unchanged renal, cardiac, and
pulmonary function. In a study of mostly European patients by
using a variety of conditioning regimens, skin score generally
improved with stabilization of lung function. Overall mortality was
27% because of 10% disease progression and 17% transplantation-
related mortality.308 These results suggest that more careful selec-
tion of patients earlier in disease is necessary in the design of phase
3 trials. Phase 3 randomized trials of HSCT versus monthly pulse
cyclophosphamide are accruing in Europe and are being designed
in the United States. The primary endpoint of these trials is over-
all survival.

Induction of tolerance by allogeneic HSCT

Animal models

Animal autoimmunelike diseases that occur spontaneously (with-
out known precipitating infection or immunization) are not cured

by a syngeneic HSCT. In fact, disease may be transferred to a
normal strain of mice by HSCT from the autoimmune-prone
donor.309 Syngeneic HSCT in spontaneous-onset lupuslike disease
of MRL/lpr mice resulted in only transient disease amelioration.310

Curing a spontaneous-onset autoimmunelike disease requires allo-
geneic HSCT from a nonautoimmune-prone donor.311-321 Murine
spontaneous-onset lupuslike disease is cured by allogeneic HSCT
from a normal donor strain.311,314,315,317 Spontaneous-onset diabetes
in NOD mice is prevented by allogeneic HSCT from a nondiabetic
prone strain316,319,321 and cured by combined pancreas and alloge-
neic HSCT from the same donor.318 In fact, the “tolerizing”
effect322,323 of HSCs is best demonstrated by donor-specific organ
tolerance when combining solid organ and marrow transplant from
the same donor.

Donor-specific organ tolerance was initially performed by
lethally irradiating animals to ablate their marrow followed by
allogeneic donor bone marrow transplantation.324-326 Although
donor-specific tolerance is associated with hematopoietic chimer-
ism, the cellular mechanism by which donor-specific tolerance
arises is not fully understood.327 Fas ligand is a surface protein that
can signal other cells expressing Fas to undergo apoptosis. Fas
ligand expression appears to be necessary for donor marrow to
induce donor organ tolerance, because hematopoietic-induced
donor-specific tolerance does not occur in Fas knockout mice.328

Therefore, the mechanism of allogeneic HSCT-induced tolerance
to solid organ grafts may be in part explained by donor-induced
apoptotic deletion of graft reactive cells. It has been postulated that
allogeneic HSCT may induce tolerance to autoimmune epitopes by
a similar deletion of autoreactive repertoires, a phenomena termed
graft versus autoimmunity (GVA).329,330 A graft-versus-disease
effect has already been established as the mechanism of remission
for several hematologic malignancies, first discovered in 1981 and
termed graft versus leukemia.331,332

A putative GVA effect is supported by experiments showing that
allogeneic chimerism by using a sublethal conditioning regimen
followed by allogeneic transplantation can prevent the onset of
diabetes and even reverse preexisting insulitis in NOD mice,
whereas the same radiation protocol without allogeneic HSC is
insufficient.333 With nonmyeloablative-conditioning regimens, spon-
taneous animal models of autoimmunity have been cured in the
setting of mixed chimerism.333-336 These experimental findings
support low-conditioning preparative regimens for allogeneic trans-
plantations in human autoimmune diseases.

Although in theory a GVA effect may be beneficial, the most
significant toxicity of allogeneic HSCT is an immunologic reaction
of donor cells against normal host tissues, a complication known as
GVHD. Mini-conditioning may be associated with less GVHD
compared with the more hazardous high-dose transplantation
regimens. A lower GVHD risk may be due to reduced regimen-
related tissue damage, decreased inflammatory cytokine release,
decreased exposure of hidden tissue epitopes, and veto of alloreac-
tive donor lymphocytes by hematopoietic cells of host origin,
particularly CD8� cells.337,338 Mini-transplantations are less likely
to provide the danger signal hypothesized by Matzinger54 that is
necessary to break peripheral tolerance.

Allogeneic HSCT in patients with autoimmune diseases

Anecdotal case reports of patients undergoing allogeneic HSCT for
malignancy or aplastic anemia and a coincidental autoimmune
disease have in most cases resulted in long-term remission of the
autoimmune disease.339-353 Most patients maintain remission indefi-
nitely after discontinuation of immune-suppressive prophylaxis for
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GVHD. An occasional patient has relapsed despite being chimeric
(ie, 100% donor hematopoiesis). Chimeric analysis of peripheral
blood for residual host hematopoiesis may, however, be falsely
negative. Separation and analysis of lineage-specific subsets, such
as only T cells, may reveal mixed chimerism (both donor and host
cells) in only the T-cell lineage. The clinically asymptomatic donor
may also have subclinical disease, such as rheumatoid factor
positive, that could adoptively transfer the same disease for which
the recipient received a transplant. Alternatively, because the
patients are MHC matched, the donor and recipient may have
similar non-MHC autoimmune genes that in the presence of host
“factors,” such as a persistent latent infectious agent or recurrent
environmental exposure, may initiate de novo disease.

HLA-matched sibling allogeneic transplantations have already
been successfully performed for some hematologic autoimmune
diseases, including a case of hemolytic anemia,354 pure red cell
aplasia,355 and Evans syndrome.356,357 Phase 1 allogeneic HSCT
trials using mini-conditioning regimens with and without lympho-
cyte-depleted grafts are being suggested and designed for autoim-
mune diseases. Just as in autologous HSCT, protocols will need to
be tailored for each disease.

Summary

HSCT of autoimmune disorders has raised new expectations,
opportunities, and questions. What is the best mobilization regi-

men? What is the optimal conditioning regimen? Does T-cell
depletion of the graft result in self-tolerance and decreased relapse,
or rather result in an increased risk of infections? Can we predict
candidates likely to relapse after autologous HSCT? Is relapsed
disease responsive to previously refractory therapy and easier to
control? Is HSCT cost effective? What is the mechanism(s) of
posttransplantation remission? Which, if any, diseases may be
cured by an autologous graft and which will require an allograft?
Encouraging phase 1 trials have propelled this field to phase 3 trials
in MS, SLE, RA, and scleroderma. Completion of these trials
should determine if autologous HSCT is better than current
standards of care. Nonmyeloablative or reduced-intensity alloge-
neic transplantation protocols are being written, and advances in ex
vivo stem cell expansion will soon be applied to autoimmune
diseases to eliminate regimen-related neutropenia.

Historically, most autoimmune diseases are incurable, and it
was impractical to define complete remission. HSCT, whether
allogeneic or even autologous, may change this axiom. Initial
results suggest that clinical tolerance, that is no evidence of disease
off all immune-suppressive medications with normal third-party
immune responsiveness, is being achieved in at least some patients.
However, further improvement of the efficacy and safety of both
autologous and allogeneic stem cell transplantation procedures
need to be developed, and larger cohorts of patients need to be
studied to assess the full benefits of stem cell transplantation as a
most promising new armamentarium for the treatment of autoim-
mune diseases.
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