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Summary. Important aspects of the DNA repair mechanisms in mammalian, and especially human, cells are
reviewed. The DNA repair processes are essential in the maintenance of the integrity of the DNA and in the
defense against cancer. It has recently been discovered that the DNA repair efficiency differs in different regions
of the genome and that active genes are preferentially repaired. There is mounting evidence that DNA repair
processes play a role in the development of drug resistance by tumor cells. We will discuss such data as well as
further approaches to clarify the relationship between DNA repair and antineoplastic drug resistance. Specifically,
there is an increasing need to investigate the intragenomic heterogeneity of DNA repair and correlate the repair
efficiency in specific genes to aspects of drug resistance. We also discuss the therapeutic potential of inhibiting the
DNA repair processes and thereby possibly overcoming drug resistance.

Introduction

The role of DNA repair in tumor response to treatment
is becoming an increasingly active area of research for
laboratory scientists and radiation oncologists. Medical
oncologists, however, have tended to neglect the role of
DNA repair in antineoplastic drug resistance despite
evidence that the ultimate target of most chemothera-
peutic agents is DNA. Many cancer patients treated
with chemotherapeutic agents ultimately die of pro-
gressive disease which has become resistant to a multi-
tude of different chemotherapeutic agents. The ques-
tion of how tumors become resistant to these agents is
obviously of major importance. Many mechanisms of
drug resistance have been proposed and are under
intense laboratory investigation. The role of DNA
repair in drug resistance is emerging as a key part of the
answer.

Chemotherapeutic drugs may act indirectly or di-
rectly on DNA. Indirect damage to DNA can occur by
blockage of DNA synthesis by nucleotide analogs such
as 5-fluorouracil [1, 2] or cytosine arabinoside [3, 4],
generation of free radicals from bleomycin [5] and
quinones such as mitomycin C or adriamycin [6-9],
and alteration of nucleotide binding proteins such as
anthracycline induced stabilization of the DNA topo-
isomerase II cleavage complex [10]. Drugs which di-
rectly damage DNA include alkylating agents [11] and
platinum analogs [12]. Alkylating agents, such as the
nitrosoureas, mitomycin C, cyclophosphamide, mel-
phalan, chlorambucil and busulfan, form monofunc-
tional or bifunctional covalent bonds between the car-
bon of an alkyl moiety and the nucleophilic bases of
DNA. Although alkylation may occur on any oxygen or

nitrogen in the DNA double helix, the two predominate
alkylation sites are the N7 and O6 positions of guanine
[12, 14]. Cisplatin adducts are bidentate with the
platinum moiety bridging bases on the same DNA
strand (intrastrand) or bases on opposite strands (inter-
strand) [15, 16]. The predominate cisplatin adduct is
intrastrand between the N7 position of neighboring
guanines [15,16].

DNA is not only the final target of most antineoplas-
tic drugs but is also damaged by irradiation, ultraviolet
light, and numerous other carcinogenic and mutagenic
agents [17]. In order to restore the integrity of the
genome, organisms have evolved various mechanisms
of DNA repair. These protective repair mechanisms
may unfortunately also circumvent the intended cyto-
toxic effect of chemotherapy. Indeed, enhanced effi-
ciency of DNA repair may contribute to the ability of
malignant cells to develop cross resistance to a variety
of cytotoxic antineoplastic agents.

Mechanisms of DNA repair

Most of our present knowledge about DNA repair
processes stems from work done in bacteria. Many of
these processes have also been identified in mammalian
cells, but our models for repair processes are still main-
ly based on prokaryotic studies.

DNA repair has been classified as direct, base exci-
sion, nucleotide excision, and postreplication (Figure
1) [17-19]. An absolute distinction between base exci-
sion repair and nucleotide excision repair is not always
applicable [17] and therefore we will not attempt to
draw any rigorous distinction between these two forms
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of excision repair. Direct repair which occurs in both
prokaryotes and eukaryotes is simple reversal of the
DNA damage without excision and replacement of the
modified base or nucleotide. In the case of small al-
kylating agents, this is accomplished by transfer of the
alkyl moiety via an alkyltransferase from the alkylated
base to a cysteine residue in the active site of the
enzyme [20, 21]. Alkyltransferases are suicide enzymes
which are irreversibly inactivated after binding an alkyl
group [21]. Therefore, repair of one alkyl adduct stoi-
chiometrically requires consumption of one enzyme
molecule.

Excision repair involves recognition and removal of
the lesion by a glycosylase which hydrolyzes the glyco-
sidic bond between the damaged base and its deoxyri-
bose sugar [17, 18, 22]. An AP (apurinic, apyrimidinic)
endonuclease then cleaves the phosphate internucleo-
tide linkage. DNA repair is completed by an exo-
nuclease that degrades a short segment of DNA from
the damaged strand, a polymerase which fills in the gap
in the DNA strand using the complementary strand as
a template and finally a ligase which reunites the sugar
phosphate DNA backbone. In general, damage to
DNA by small alkyl groups (such as the chloroethyl
groups of the nitrosureas) is reversed by the direct
repair pathway. In contrast, cisplatin, bulky alkylating
agents like mitomycin C and ultraviolet light induced
pyrimidine dimers are repaired by nucleotide excision
[17,18, 22].

Another form of excision repair has been identified
in prokaryotes. In E. coli the three gene products
UVrA, UVrB and UVrC together form the protein
complex called ABC excinuclease. Interestingly, this
complex recognizes a wide variety of different DNA
lesions. The complex hydrolyzes a phosphodiesterase
bond on each side of the damaged base, resulting in
excision of an oligonucleotide segment containing the

damaged nucleotide [23]. So far a similar protein com-
plex has not been identified in mammalian cells, and
microinjection of ABC excinuclease into excision
repair deficient mammalian cells does not restore the
defect [24].

While direct and excision repair pathways are
mechanisms of repairing DNA prior to its replication,
postreplication repair (also known as recombinational
or daughter strand gap repair) is a mechanism of
repairing unexcised and damaged DNA after DNA
polymerase replication of the parental strands [17, 18,
25]. In this mechanism, replication of the DNA strands
is discontinuous with DNA polymerase skipping over
damaged bases. Gaps in the daughter strand can then
be filled in by recombination with an undamaged seg-
ment from the opposite parental or sister strand. The
role, if any, of postreplication repair in reversing
chemotherapeutically induced DNA damage is not yet
understood.

DNA damage inducible genes

In E. coli DNA repair enzymes are inducible. There
are several types of responses in prokaryotes that are
induced by DNA damage. Two distinct types of induci-
ble bacterial DNA repair responses are the adaptive
and SOS response [26]. The adaptive response in
E. coli is induced by alkylating agents which methylate
the O6 position of guanine [26, 27]. Removal of this
adduct by the alkyltransferase, O6 methylguanine
methyl transferase (O6 MGMT), transforms O6 MGMT
into a DNA binding protein which transcriptionally
activates the expression of a series of DNA repair
genes including the ada gene which codes for transcrip-
tion of more O6 MGMT [27-29]. Therefore, transcrip-
tional regulation of the O6 MGMT gene is directly
linked to consumption of the gene product
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The SOS response in E. coli is induced by a variety
of nonspecific DNA damaging agents, including UV
light and alkylating agents [30]. The common denomi-
nator in the DNA damage which induces this type of
repair is the formation of single stranded DNA which
upregulates a constitutively expressed protein, rec A
(30, 31]. Activated rec A cleaves the repressor protein
lex A [32]. Removal of lex A leads to transcription of
the SOS operon, a group of more than 20 genes whose
transcription is regulated by the same control elements
[33]. Three SOS genes (uvrA, UVTB, and uvrC), code
for the previously mentioned ABC excinuclease which
is involved in nucleotide excision repair [33, 34].
Another SOS gene is sul A which codes for a protein
that delays the cell cycle in G2 allowing time for DNA
repair before the cell enters into mitosis [33, 35, 36]. In
addition, the SOS operon also codes for several genes
(rec A, rec N, ruv) involved in recombinational or
postreplication repair [17, 33].

In contrast to prokaryotes, the regulation of expres-
sion of eukaryotic mammalian DNA repair genes is
more complex and remains vague. There is no well
defined eukaryotic counterpart to the bacterial adap-
tive and SOS responses. Furthermore, the induction of
resistance to alkylating agents in mammalian cells is
difficult and at best the cells manifest only a relatively
modest 10-15 fold [37-39] resistance. Also, when
selected for resistance to one alkylating agent, mamma-
lian cells may or may not display cross resistance to
other alkylating agents [37-39]. Mammalian cells do
nevertheless develop low level resistance or adaptation
to alkylating agents. Mammalian O6 alkyltransferase
[40] excision repair [41] and recombinational activity
[42] have been documented to increase after exposure
to alkylating agents. In addition, the messenger RNA of
several mammalian genes has been shown to increase
rapidly following DNA damage [43]. These include
c-fos [44] metallothionein [45], ubiquitin [46], gadd
(growth arrest and DNA damage inducible genes) [47]
and p-polymerase [48]. Of these genes only gadd and
P-polymerase are directly involved in DNA repair.
P-polymerase is a DNA repair polymerase that fills in
the gaps following excision of damaged nucleotides.
The incompletely characterized gadd genes may be the
counterpart to the E. coli sul A gene. Gadd genes thus
appear to be involved in the arrest of the cell cycle fol-
lowing DNA damage.

Heterogeneous DNA repair

The structure of chromatin in mammalian cells is com-
plex and involves a 50,000 fold packaging of cellular
DNA in the nucleus. It is therefore not surprising that
DNA repair in mammalian cells appears to be non-
random. There is evidence that some genes are re-
paired more efficiently than others. For example,
pyrimidine dimers in human cell lines are repaired
twice as fast in the actively transcribed dihydrofolate
reductase (DHFR) gene as in surrounding hetero-

chromatin [49]. This preferential repair of transcrip-
tionally active genes is even more pronounced in
Chinese Hamster ovarian cells in which the DHFR
gene is efficiently and completely repaired while dam-
aged heterochromatin is apparently almost not repaired
[50]. In a mouse 3T3 fibroblast cell line, pyrimidine
dimers in the active c-abl protooncogene are 85% re-
paired within 24 hours while in the transcriptionally
silent c-mos protooncogene only 22% of damaged
DNA is repaired within 24 hours [51]. In CHO cells, it
has been shown that transcriptional activation of the
metallothionein gene doubles its rate of repair of UV
induced pyrimidine dimers [52]. In human cells, the
rate of repair of this gene increased both after UV and
aflatoxin pi induced damage [53]. It appears, therefore,
that DNA repair may be directed either by chromatin
structure or the transcriptional apparatus itself towards
preferential repair of actively transcribed genes. In-
deed, preferential DNA repair of active genes appears
to be of vital importance for genomic integrity since
patients with Cockayne's syndrome who suffer from
multiple disabilities including dwarfism and mental
retardation have normal overall DNA repair, but defi-
cient preferential gene specific repair after UV damage
[54].

DNA repair may not only be gene specific but also
strand specific. In both rodents and humans a differ-
ence in the rate of nucleotide excision repair of pyri-
midine dimers exists between the transcribed and non-
transcribed strand of the DHFR gene [55]. Interest-
ingly, in E. coli evidence suggests that the difference in
the rate of repair between the two DNA strands of the
lactose operon exists only when the gene is being
actively transcribed [56]. This finding suggests that
some gene specific DNA repair is associated with the
transcription machinery rather than dependent upon
local chromatin accessibility.

Heterogeneity in DNA repair is complicated further
by the existence of two compartments of mammalian
DNA, nuclear and mitochondrial. Mitochondrial DNA
which represents only 0.1-1% of total mammalian
DNA [57] is 3 to 500 times more susceptible to dam-
age than nuclear DNA [58-60]. Little is known about
the mechanisms of mitochondrial DNA repair. Human
mitochondria appear unable to repair DNA damage
induced by ultraviolet light [61]. However, repair of
mammalian mitochondrial DNA damage induced by
chemical alkylation has been reported [62, 63]. There-
fore, in studying the association of DNA repair to anti-
neoplastic drug resistance, a range of mechanisms must
be evaluated, including overall genomic repair, pref-
erential gene repair, strand specific repair and mito-
chondrial DNA damage and repair.

Human DNA repair genes

Several human DNA repair genes have been cloned
including the alkyltransferase, O6 methylguanine methyl
transferase (O6 MGMT) [64], the base excision repair
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gene Uracil DNA glycosylase [65] and the nucleotide
excision repair genes, ERCC-1 [66, 67], ERCC-2 [68],
ERCC-3 and ERCC-6 [69]. The human O6 MGMT
gene was cloned by transfecting human DNA into E.
coli cells deficient in alkyltransferase activity and
selecting for colonies resistant to alkylating agents.
Human Uracil DNA glycosylase was cloned by screen-
ing a human cDNA phage library with monoclonal
antibodies to the glycosylase.

Initial attempts to identify human nucleotide exci-
sion repair genes involved studies with xeroderma
pigmentosum (XP) cell lines. Xeroderma pigmentosum
is an inherited genetic disorder characterized by a
defect in nucleotide excision repair. Cells from patients
with XP are assigned to one of nine different com-
plementation groups according to phenotypic improve-
ment in DNA repair following cell fusion studies.
Attempts to characterize the genes responsible for the
DNA repair deficit in XP cells by transfection of
foreign DNA has been unsuccessful partly because
human cells are poor recipients of DNA. Therefore,
mutant Chinese Hamster Ovarian (CHO) cell lines sen-
sitive to DNA damage were used to identify human
nucleotide excision repair genes. Fusion of different
CHO complementation mutants with normal human
lymphocytes has resulted in correction of the DNA
repair deficit and subsequent identification of the
responsible human chromosome or gene. The human
genes responsible for reversing the defect in DNA
repair in CHO cells were termed ERCC for excision
repair complementing Chinese Hamster. A number
suffix was then attached to indicate the complementa-
tion group from which the gene was obtained. Similarly,
a human gene that reverses mutant CHO cell sensitivity
to irradiation has been termed XRCC-1 (x-ray comple-
menting Chinese Hamster) and assigned to human
chromosome 19 [70],

The evolutionary importance and conservation of
DNA repair genes is apparent from the DNA sequence
of the human ERCC-1 gene which has homology to
both yeast and bacterial nucleotide excision repair
genes [71, 72]. Furthermore, transfection of a bacterial
direct repair gene (O6 methylguanine methyl transfer-
ase) into human cells confers upon those cells resistan-
ce to DNA methylating agents [73, 74].

Role of DNA repair in drug resistance

Drug resistance in some human cell lines has been as-
sociated with changes in DNA repair. Examples are
listed in Table 1. Human tumor cells which are deficient
in O6 alkylguanine alkyltransferase are unable to repair
methylation of the O6 position of guanine [75, 76].
These cells are termed Mer (-) (methyl excision repair
deficient). Cells that are methyl excision repair profi-
cient are termed Mer (+). Mer (—) cells in comparison
to Mer (+) cells are hypersensitive to alkylating agents
such as the nitrosoureas [76, 77]. In vitro studies of

Table 1. Antineoplastic drug resistance and DNA repair in human
cancer cells.

Author Human cancer Drug (relative Comments
(ref.) cell line resistance)

Lai
[85|

Masuda
[84]

Bedford
[83]

Gerson
[80]

Lazo
[93|

Urade
[94|

Maynard
[78|

Torres-
garcia
[87]

Batist
[88|

ovarian

ovarian

bladder/testi-
cular

leukemic

head/neck,
squamous

cervical

melanoma

lymphocytes

breast

cisplatin (1:20)

cisplatin (1:3)

cisplatin (1:5)

nitrosourea

bleomycin
(1:4-21)

bleomycin
(1:20)

mtic(l:5-i0)

melphalan

melphalan
(1:3)

2-3 fold increase in
DNA repair

3 fold increase in
DNA repair

sensitive cells defi-
cient in DNA repair

increased alkyl-
transferase

variable increase in
DNA repair

increased DNA
repair

increased alkyl-
transferase

cells from patients
resistant to melpha-
lan repaired DNA in
24 hours; cells from
patients sensitive to
melphalan had no
measurable DNA
repair

enhanced DNA
repair

human tumor cell strains have demonstrated a correla-
tion between the level of O6 alkylguanine transferase
and resistance to both 5-(3-methyl-l-triazeno) imida-
zole-4-carboxamide (MTIC) [78] and chloroethylnitro-
soureas [79-82]. In vivo data in patients with chronic
myelogenous leukemia has also demonstrated that a
correlation exists between the level of O6 alkylguanine
transferase in peripheral blood lymphocytes and cellu-
lar resistance to nitrosoureas [80].

DNA nucleotide excision repair is also altered in
some drug resistant human cell lines. A human testicu-
lar cell line hypersensitive to cisplatin has been shown
to be deficient in DNA repair [83]. Human ovarian
cells, selected in vitro for resistance to cisplatin, remove
platinum adducts more efficiently than their drug sensi-
tive counterparts [84]. In addition, ovarian cell lines
have been established from the same patient before and
after treatment with cisplatin [85]. Compared to the
pretreatment cell line, the post treatment cell line
shows 2-3 fold increased drug resistance and a 3-fold
increase in DNA repair. Furthermore, expression of the
human DNA repair gene ERCC-1 has been shown in a
preliminary study to correlate with resistance to cis-
platin in human ovarian cancer [86]. In patients with
chronic lymphocytic leukemia (CLL) who are resistant
to treatment with melphalan, DNA repair in peripheral
lymphocytes is completed within 24 hours of treatment
[87]. On the other hand, previously untreated CLL pa-
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tients demonstrate no DNA repair 24 hours after
exposure to melphalan [87]. A breast cancer cell line
previously selected for a three fold resistance to mel-
phalan has a rate of DNA repair 2-3 fold higher than
in sensitive cells [88]. Therefore, both in vitro and in
vivo evidence suggest that human rumor resistance to
antineoplastic drugs correlates with efficiency of DNA
repair. One aspect that needs attention, however, is that
many of the above studies are done at equimolar rather
than equitoxic drug levels. They optimally need to be
done at both levels.

An association between the level of cisplatin adducts
in the DNA of peripheral white blood cells (WBC) and
ovarian [89] or testicular rumor [90] response to plati-
num drug based chemotherapy has been reported. The
difference in the number of adducts between respon-
sive and unresponsive tumors may be due to differ-
ences in DNA repair. The data suggest that patients
with ovarian or testicular cancer who do not respond to
treatment form low levels of adducts in WBC or tumor
cells. Conversely, patients who do form the highest
levels of WBC DNA-adducts have a better chance of
responding to treatment. These data also imply that a
patient's tumor response to platinum based chemothe-
rapy is a function of innate capacity to repair DNA, a
property common to tumor and host, and may be
determined by inheritance or as a function of exposure
to environmental factors prior to treatment. The tumor
response may be predicted during the first few cycles of
treatment by measuring peripheral WBC DNA plati-
num adducts.

The DNA repair polymerase, polymerase p\ which
fills in the gaps following excision of damaged nucleo-
tides has also been associated with drug resistance [91].
Elevated DNA polymerase P in murine leukemic cells
correlates with resistance to cisplatin, melphalan,
BCNU, and chlorambucil [91]. Resistance to adria-
mycin [92] and bleomycin [93, 94] also occurs by
means of more efficient DNA repair although the exact
enzyme(s) involved is unclear.

The increase in DNA repair is not always sufficient
to account for the level of drug resistance [92, 95]. The
lack of a direct correlation between DNA repair and
drug resistance is probably due to other mechanisms of
resistance such as increased rates of drug efflux as
determined by levels of P-glycoprotein [96], or by in-
creased drug inactivation by glutathione [97] or metal-
lothionein [98]. Alternatively, DNA repair in human
tumor drug resistance has only been studied at the level
of overall genome; at this level, gene specific DNA
repair changes would not be detected. Further studies
of DNA repair in specific genes in sensitive and resis-
tant cells are likely to demonstrate interesting correla-
tions. Drug resistance may relate to changes in gene
specific repair, strand specific repair, or mitochondrial
DNA repair. These types of repair need to be examined
in pleiotropic drug resistant cell lines.

Inhibitors of DNA repair

Modulation of DNA repair may become a promising
method of circumventing drug resistance (Figure 2). In
general, significant DNA damage is accompanied by
arrest of the cell cycle in G2. Prolongation of the pre-
DNA synthesis G2 phase allows more time for DNA
repair prior to DNA replication. Methylxanthines such
as caffeine prevent cells from arresting in G2 [99, 100]
and therefore may limit the time available for DNA
repair.

Caffeine also has a myriad of other effects which are
not completely understood. For example, in E coli,
caffeine has been shown to alter the damage site-spe-
cific binding of excision repair enzymes [101]. Whether
this also occurs in eukaryotic cells is unknown. Caf-
feine has also been reported to enhance the cytotoxicity
of cyclophosphamide and melphalan in mammalian
cells [102, 103]. However, some studies have ques-
tioned the enhancement of antineoplastic cytotoxicity
by methylxanthines [104].

Individual DNA repair enzymes may also be inhib-
ited. Removal of the alkyl group from the O6 position
of guanine may be blocked by inhibition of O6 alkyl-
transferase (O6 AT) activity. Since O6 alkyltransferase
is a suicide enzyme, agents such as streptozotocin and
O6 methylguanine, that methylate the enzyme's active
site, deplete its activity. Streptozotocin is an alkylating
agent that methylates guanine resulting in O6 methyl-
guanine adducts. Repair of each adduct stoichiometri-
cally inactivates one O6 alkyltransferase enzyme. On
the other hand, directly treating cells with O6 methyl-

IB IB IB IB IB 'B
IB IB- IB IB IB IB

Dttoyln
CtOCyd*

Btock»dby
ItothytunUitnn

DIRECT REPAIR

IB IB- IB IB IB IB

AlkyltrmnjJtrmM

\ <

Btocfctdby
Strtptozotocfn

EXCISION REPAIR

IB IB Hi 1 Hi IB
IB IB- IB IB IB IB

Rtcoonfllon
and

ExcMon

IB I B I B 1 IB IB
IB IB IB |B IB IB

( I 5 H I B H I B
(B IB IB IB IB IB

Fig. 2. Possible sites for therapeutical inhibition of DNA repair.
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guanine is also effective in reducing O6 AT activity
[105]. In vitro studies of myeloid leukemic cells pre-
treated with O6 methylguanine have shown a 87%
reduction of O6 AT activity and a 6.3 fold decrease in
the lethal (LD50) dose of nitrosoureas [80]. Further-
more, in vivo human studies have shown that daily
treatment with streptozotocin for 3 days reduces O6

AT activity in peripheral lymphocytes by 26% [106].
The topology of DNA may also be important in

DNA repair [107, 108]. DNA topoisomerases are en-
zymes which are involved in the coiling and relaxation
or twisting and untwisting of DNA [109]. Torsional
stresses placed upon DNA by replication and trans-
cription, are believed to be relieved by topoisomerase
mediated relaxation of torsional twists. Topoisomerase
I allows relaxation by cleaving, then religating one
strand of the double helix. Topoisomerase II, which is
the eukaryotic counterpart to bacterial gyrase, cleaves,
relaxes and then religates both strands of DNA. Topo-
isomerase inhibitors may stabilize the usually transient
enzyme DNA cleavage complex. The topoisomerase II
DNA cleavage complex is stabilized by amsacrine
(mAMSA), adriamycin, etoposide (VP-16) and teno-
poside (VM-26) [109]. The topoisomerase I DNA
cleavage complex is stabilized by camptothecin [110].
Alternatively, novobiocin and merbarone are topoiso-
merase inhibitors that decrease topoisomerase activity
through an unknown mechanism but probably not by
stabilization of the cleavage complex [107, 111]. The
topoisomerase inhibitors novobiocin, VP-16 and
mAMSA have been shown to inhibit repair of DNA
damage [112, 113]. The combination of a topoisomer-
ase I inhibitor (camptothecin) and a topoisomerase II
inhibitor (merbarone) has also been found inhibit gene
specific repair (Stevnsner and Bohr, MS submitted).
Interestingly, cytokines such as tumor necrosis factor
(TNF), potentiate mAMSA, VP-16, and VM-26 inhibi-
tion of topoisomerase II [114]. Therefore TNF and
other cytokines may also play a role in inhibition of
DNA repair.

Excision repair pathways may also be inhibited by
modulation of the repair polymerization step. There
are four mammalian DNA polymerases (a, ($, y and 5)
[115]. DNA polymerase y is found only in mitochon-
dria [115]. DNA polymerase a and 8 are mainly in-
volved in DNA replication [115], but can also play a
role in DNA repair in some systems [115-117]. The
main DNA repair polymerases is thought to be poly-
merase P [115]. Two antineoplastic agents which may
inhibit DNA repair polymerase are hydroxyurea and
cytosine arabinoside (ara-c). Hydroxyurea inhibits
ribonucleotide reductase [118] which is necessary to
maintain an intracellular pool of deoxynbonucleotide
triphosphates. Hydroxyurea, therefore, depletes the ceh1

of the building block precursors required to polymerize
DNA. Cytosine arabinoside is an analog of deoxycyti-
dine which, when incorporated into DNA, causes chain
termination [4]. Although hydroxyurea alone is not
generally considered an inhibitor of DNA repair, the

combination of both hydroxyurea and ara-c inhibits
repair of cisplatin induced DNA damage in a human
colon cell line [119]. Another compound, aphidicolin,
can inhibit DNA repair polymerase a and 6 [120], and
it inhibits repair of cisplatin adducts in a human ovar-
ian cell line [85].

The final step in DNA excision repair pathways is
ligation of the newly synthesized oligonucleotide strand
to the undamaged original strand by a distinct enzyme,
ligase II [121]. The activity of ligase II appears in part to
be dependent upon posttranslational modification by
ADP ribosylation [121]. ADP ribosylation is a ubiqui-
tous mechanism by which cells regulate protein activity
[122]. It has been shown that ADP ribosylation partici-
pates in the repair of DNA damage caused by alkylat-
ing agents [123]. Many proteins other than ligase II that
are likely to be involved in DNA repair such as topiso-
merases [124], histones [125] and ERCC-1 [126], may
also undergo ADP ribosylation. Although the exact
role of poly(ADP)ribosylation in DNA excision repair
is unclear, it may be important. Common agents used to
inhibit nuclear ADP-ribosylation such as 3-amino-
benzamide and methylxanthines increase the toxicity of
alkylating agents like dimethyl sulfate [127] and MTIC
[128].

Finally both heat and depletion of cellular amines
may function by ill defined mechanisms to modulate
DNA repair. Polyamines such as putrescine, spermine
and spermidine are positively charged at physiological
pH and bind with negatively charged DNA [129]. Cel-
lular polyamine levels may be depleted by inhibiting
synthesis with a difluoromethylornithine (DFMO) or
methylglyoxal-bis (guanylhydrazone) (MGBG) [130].
Polyamine depletion has been documented to increase
the cytotoxicity of L-phenylalanine mustard [131] and
BCNU [132]. This effect has been speculated to be at
least in part due to altered DNA repair [131]. In addi-
tion, polyamine depleted cells are deficient in repair of
x-ray induced DNA damage [133]. Although the inter-
action of polyamines and DNA repair pathways is
poorly understood, depletion of polyamines causes
perturbations of the cell cycle and changes in DNA
conformation both of which could affect DNA repair.

Mild hyperthermia (40-43*C) also has been demon-
strated to sensitize cells to nitrosoureas [134], cisplatin
[135, 136], mitomycin C [135], bleomycins [137] and
x-ray irradiation [138-141]. Thermal enhanced sensi-
tivity of cells to bleomycin and x-ray irradiation has
been shown to be due to inhibition of DNA repair [137,
142-145]. Heat, however, causes alterations in tumor
blood flow and multiple cellular disturbances including
alterations in DNA and protein conformation, changes
in cytoplasmic membrane fluidity, and depletion of
intracellular polyamines any one of which may alter a
tumor's sensitivity to chemotherapy [146].
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