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In addition to its established hematological indications,
autologous hematopoietic SCT (HSCT) can ameliorate
the course of severe autoimmune disorders through a
reconditioning of the immune system. We have shown
earlier that HSCT determines extensive renewal of the
TCR repertoire in multiple sclerosis patients. However,
the observed persistence post-therapy of some pre-existing
T-cell clones suggested the potential for disease recapitu-
lation. Here, we investigated whether TCRs that reappear
after a myeloablative conditioning regimen and HSCT
were reintroduced with the autologous, CD34-selected
hematopoietic stem cell (HSC) graft. In all, we cloned and
sequenced 2237 TCR clones from peripheral blood and
HSC grafts from four patients who underwent autologous
HSCT for severe multiple sclerosis. Surprisingly, in-frame
TCR sequences were detectable in only one of four patient
grafts and no TCR sequences were found to be shared
between the graft and pre- or post-HSCT samples. These
findings provide the first evidence from extensive sequen-
cing analysis to suggest that T cells in autologous HSC
grafts that have been mobilized with CYþG-CSF and
CD34-selected have limited survival capacity and are
therefore unlikely to be a major source of carryover of
T-cell expansions potentially involved in autoimmune
disease.
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Introduction

Autologous hematopoietic SCT (HSCT) can control severe
autoimmune disease in high-risk patients who fail to
respond to immunomodulatory and conventional immu-
nosuppressive treatments. One mechanism through which
this beneficial action is thought to occur is by executing a
large-scale depletion of pathogenic memory T cells and by
promoting the regeneration of a new and tolerant immune
repertoire.1 This notion termed ‘immune resetting’ has been
corroborated by the demonstration of a massive renewal of
the TCR repertoire post-HSCT in patients with multiple
sclerosis (MS)2 and by the evidence of recovery of
regulatory T cells in individuals with juvenile idiopathic
arthritis.3

Currently, there is a debate as to whether patients with
autoimmune disease should be treated with maximum
intensity myeloablative conditioning regimens or with less
intensive non-myeloablative schemes.4 Myeloablative re-
gimes are expected to be more effective in ablating
pretransplant disease-related clones, but are complicated
by treatment-related toxicities.5–9 In our previous study, we
found that a myeloablative conditioning regimen resulted
in extensive immune renewal, yet a minority of the T-cell
clones populating the peripheral blood pre-therapy was
also detected in the blood post-transplantation in some
patients.2 Although the frequency of these clones was
decreased post-transplant and their persistence was not
associated with a different clinical outcome during the
follow-up, an incomplete immune renewal even after a
myeloablative regimen raised the concern of potential
recapitulation of autoimmunity and prompted us to
investigate the source of the remnant cells.

We undertook this analysis to clarify whether persisting
T-cell clones could have arisen from the reinfused CD34-
selected hematopoietic stem cell (HSC) autograft. To
understand the origin of the persisting clones, we carried
out extensive TCR repertoire sequencing in four patients
with severe MS undergoing autologous myeloablative
HSCT. After methodological optimization, TCR sequences
were analyzed from pre- and post-transplantation samples,
as well as from the CD34-selected HSC graft to evaluate
their potential reintroduction. Low yields of in-frame TCR
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rearrangements recovered from the HSC graft samples
suggest extensive T-cell death in the HSC grafts obtained
after CY mobilization and did not show the presence of any
TCRs that persisted post-transplantation in the peripheral
blood. These findings suggest that persisting T-cell clones
are unlikely to have arisen from the infused autograft.

Patients and methods

Patients and HSCT regimen
Patients with MS received autologous HSCT as part of an
investigational protocol that has been previously re-
ported.2,10 The study had received the Institutional Review
Board (local and NIH 02-N-N196) and the US Food and
Drug Administration approval (IDE 6440). HSCs were
collected by therapeutic mobilization using 2 g/m2 of CY
and 5 mg/kg/day of G-CSF beginning 96 h later. When the
WBC count rebounded to more than 1� 109/l, leukapher-
esis was performed using a Cobe Spectra (Lakewood, CO,
USA) continuous flow blood cell separator. Products were
enriched for CD34þ HSC using the Isolex (Baxter,
Chicago, IL, USA) stem cell separation device. The
myeloablative conditioning regimen began after adequate
collection of CD34þ HSCs and consisted of 120mg/kg of
CY and 1200 cGy of TBI.10

Clinical specimens
PBMCs were obtained from leukapheresis before mobiliza-
tion (baseline) or at the indicated time points after
transplant. From each peripheral autologous graft, an
aliquot constituting 1/100th of the purified graft was
obtained after release from regulatory requirements. All
samples were cryopreserved according to standard techni-
ques. PBMC samples were screened for inclusion in this
study using TCR Vb-specific Ab staining by FACS and
complementarity-determining region 3 (CDR3) spectratyp-
ing analysis confirming significant changes in the post-
HSCT repertoire compared with baseline.2,11 Pre-mobiliza-
tion and post-transplantation PBMC samples and auto-
logous hematopoietic graft aliquots from four patients
(MS-1, MS-2, MS-3 and MS-4) were selected for in-depth
TCR sequencing analysis. CD4þ or CD8þ T-cell subsets
were immunomagnetically sorted as described.2 A compre-
hensive list of persisting TCR clones present in the TCR BV
repertoire for both the pre- and post-HSCT samples of
these patients was then obtained by sequencing large
numbers of clones (100–300 per patient time point) using
described methods.2 TCR BV gene family primers used to
sample the T-cell repertoire in this study included BV5,
BV9, BV13 and BV19.

TCR BV-BJ amplification
TCR BV-BJ rearrangements were PCR amplified from
genomic DNA using BIOMED-2 multiplex primers as
described.12 Two BIOMED-2 multiplex primer sets were
prepared: multiplex primer tube 1 containing 23 TCR BV
and six JB1 gene-specific primers; and tube 2 contained the
same TCR BV and seven JB2 gene-specific primers.12 Final
PCR conditions were optimized to: 1�ABI buffer II,

1.5mM MgCl2 (multiplex primer tube 1), 2mM MgCl2
(multiplex primer tube 2), 10 pmol of each primer, 200 uM
dNTP and 2U AmpliTaq Gold (Applied Biosystems,
Foster City, CA, USA). Thermal cycling conditions were:
95 1C for 7min; 40 cycles at 95 1C for 30 s, 60 1C for 30 s,
72 1C for 30 s and a final extension at 72 1C for 10min. PCR
amplicons were then cloned and sequenced as described.13

Results

Characteristics of the TCR repertoire in the HSC grafts
and peripheral T-cell subsets
The composition of the HSC graft is provided in Table 1.
CD3þ cells had low frequencies in the CD34þ selected
autologous HSC grafts, comprising 0.1–0.6% of total
cells (Table 1). The calculated total number of CD3þ
cells infused in each patient ranged from 7.00� 105 to
1.61� 106.

Amplification of the selected TCR BV genes from
CD4þ and CD8þ T-cell subsets sorted from PBMCs
obtained before mobilization and after autologous HSCT
resulted in 2237 in-frame TCR B rearrangements. An
average of 177 sequences were obtained for each patient
time point (Table 2), providing an accurate representation
of TCR diversity within each sample, as shown by our
previous methodological work.13 Longitudinal compari-
sons of pre-mobilization and post-transplantation TCR
sequences from patients MS-1, MS-2 and MS-3 identified
oligoclonal species persisting in baseline (pre-HSCT), 6
months and 1–2 year post-HSCT samples (data not
shown). No persisting TCR sequences were found to be
shared between pre-mobilization and post-HSCT samples
for MS-4. Oligoclonal expansions detected by TCR
sequencing of patient MS-1, BV 9 pre-mobilization samples
(Figure 1a), were also detected, though more prominently,
by CDR3 spectratyping (Figure 1b). Overall, we observed
a clear trend toward increased CDR3 diversity for MS-1,
BV 9 samples at both 6 months and 2 years post-therapy
using both techniques. Similar results were also obtained
from MS-1, BV 19 CD4þ T cells by TCR sequencing
(Figure 1c), and spectratyping (Figure 1d), where skewing
of the CDR3 repertoire diversity observed early post-
therapy at 6 months showed increased diversity by 2 years
post-transplantation. The representation of CDR3 length
diversity was overall very similar with only minor
differences between the two techniques, confirming that

Table 1 Characteristics of CD34+ selected hematopoietic stem

cell grafts

Patient % CD34+ CD34+ Infuseda % CD3+ CD3+ Infusedb

MS-1 91.2% 4.07� 108 0.20% 8.54� 105

MS-2 71.8% 4.88� 108 0.10% 7.00� 105

MS-3 70.4% 1.83� 108 0.60% 1.61� 106

MS-4 70.5% 2.81� 108 0.35% 1.37� 106

aThe number of CD34+ cells infused in each patient was calculated by
multiplying the total number of cells infused by the percentage of CD34+
cells in the autologous graft as determined by FACS staining.
bThe number of infused CD3+ cells was calculated as described above for
CD34+ cells.
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the sequencing analysis provided an accurate representa-
tion of the actual TCR repertoire.

BIOMED-2 primer optimization
To overcome potential limitations of reverse transcription
and PCR on the limited graft samples, we chose to amplify
TCR BV-BJ rearrangements from the HSC graft DNA
using BIOMED-2 multiplex primers.12 As HSC graft

specimens were extremely limited in quantity, we first
optimized PCR conditions to ensure robust amplification
and cloning efficiency. Two pHN1 plasmids, Q334 and F6,
containing in-frame TCR rearrangements were used in
positive control spike-in experiments for the BIOMED-2
multiplex primers. The Q334 plasmid containing an in-
frame TRBV6-3*01, TRBJ1-2*01, TRBD1*01 rearrange-
ment was used as a positive control for BIOMED-2 multiplex
primer tube 1; and for multiplex primer tube 2, an F6
plasmid containing a TRBV13*01, TRBJ2-7*01, TRBD2*02
TCR rearrangement was used as a positive control.

Using optimized PCR conditions described above in
conjunction with Q334 or F6 plasmids, we observed robust
amplification for both multiplex primer tubes 1 and 2 in the
presence of 10 or more copies of plasmid template per
reaction, as determined by agarose gel electrophoresis
(Figure 2a). Subsequent cloning and sequencing of the gel-
purified products confirmed the correct TCR insert in 8/10
colonies for Q334 and tube 1 and in 6/10 colonies for F6
and tube 2 (data not shown). Serial dilutions of both the
Q334 and F6 plasmids down to approximately one copy
plasmid template per reaction resulted in 2/10 correct in-
frame TCR sequences for both F6 and Q334 (data not
shown).

As CD3þ cells were detected at low frequencies within
the CD34þ selected HSC graft aliquots, we next wanted to
determine the sensitivity of the optimized BIOMED-2
multiplex primers and TCR sequencing techniques in
recovering in-frame TCRs from live T cells mixed in
a heterogeneous cell population. To test this, two CD3þ
T-cell clones of known TCR rearrangements were used as
positive control ‘spikes’ into a ‘background’ of non-TCR-
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Figure 1 Complementarity-determining region 3 (CDR3) length analysis from TCR B sequencing and spectratyping MS-1 of BV-9 and BV-19 amplified
samples. The CDR3 length in amino acids (aa) is shown for baseline (pre-mobilization) and 6 month (mo), and 2 year ( yr) post-therapy samples. TCR B
diversity for BV 9 amplified samples from (a) TCR sequencing showing the total number of T-cell sequences (no T cells) obtained with similar CDR3 lengths;
and (b) high-resolution TCR BV CDR3 spectratyping analysis. A DNA size marker (vertical line) is shown at 247 bp and serves as a reference for
comparative analysis between samples. As in (a) and (b), TCR B diversity is shown for BV 19 amplified samples using (c) TCR B sequencing techniques and
(d) spectratyping. A reference line at 245 bp is provided in the spectrogram.

Table 2 Analysis of TCR repertoire diversity in pre-mobilization

and post-HSCT transplantation samples, for selected BV genes of

interest

TCR repertoire diversity in PBMC
No. of TCR clones (% unique)a

Samples
Pre-mobilization

Post-HSCT

Patient Subset BV geneb Baseline 6–12 months 2 years

MS-1 CD4 BV 9 157 (43%) 114 (52%) 110 (86%)
MS-1 CD4 BV 19 108 (71%) 100 (35%) 109 (80%)
MS-2 CD8 BV 19 246 (94%) NDc 255 (67%)
MS-3 CD8 BV 5 240 (87%) NDc 213 (64%)
MS-4 CD8 BV 13 312 (58%) 236 (57%)d NDc

aNo. of TCR clones describes the absolute number of in-frame TCR
rearrangements obtained for each patient/time point; % unique describes
the proportion of the TCR repertoire, which is comprised of sequences
found as a single copy and are not found in any other sample time points.
bIndicates the TCR BV gene selected for analysis based on TCR FACS
staining and CDR3 spectratyping data. Nomenclature is given according to
IMGT TCR BV designation.
cND¼ not done (specimen unavailable, or insufficient).
d1-year post-HSCT.
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positive cells: MS-10 containing an in-frame TRBV18*01,
TRBJ1-1*01, TRBD1*01 rearrangement; and a Jurkat
T-cell line containing a TRBV12-3*01, TRBJ1-2*01,
TRBD1*01 rearrangement.

After optimization of techniques to reliably transfer low
numbers of T cells (Figure 2b), 1000, 100, 10, 5 and 1 TCR-
positive ‘spike’ cells were then transferred into 1� 106

TCR-negative ‘background’ cells (HEK 293 or B cells).
Genomic DNA was then extracted and PCR amplified
(Figure 2c). Although PCR amplification products from
low cell numbers were below the limits of detection of
agarose gel electrophoresis and ethidium bromide staining,

after cloning and sequencing we were able to successfully
recover in-frame TCR sequences for all samples, even in the
presence of low numbers of T-cell ‘spikes.’ Cloning and
sequencing of PCR amplicons obtained starting from ten
T cells per reaction resulted in the correct in-frame
rearrangement for 2/4 bacterial colonies sequenced for
MS-10, and 1/4 for the Jurkat T cells; starting from five
T cells per reaction, we obtained in-frame rearrangements
from 5/9 colonies for MS-10, and 2/5 colonies for the
Jurkat T cells; and finally, PCR amplicons obtained from a
single T-cell ‘spike’ for both MS-10 and Jurkat T-cell lines
resulted in 3/11 and 2/13 in-frame TCR rearrangements,
respectively. These results confirmed the capability of our
techniques to sensitively amplify in-frame TCR rearrange-
ments from genomic DNA of a single TCR-positive cell,
even in the presence of a majority of TCR-negative cell
populations.

TCR amplification of HSC grafts
Hematopoietic stem cell graft aliquots from all patients
were then amplified with BIOMED-2 multiplex primer
tubes 1 and 2. A total of 467 HSC-derived colonies were
selected and submitted for sequencing, from which 37 in-
frame TCR sequences were obtained from the MS-1 graft
specimen (Figure 3, and data not shown). Multiple
comparative analyses of these sequences confirmed that
40% (15/37) of the TCR sequences were found as a single
copy; the remaining repeated sequences were present at a
frequency comprising 2–4% of the total population
(Figure 3, and data not shown). Analysis of the CDR3
length diversity of the TCR sequences amplified from the
HSC graft showed a near-Gaussian distribution (Figure 3).
Surprisingly, no TCR sequences were amplified from
MS-2, 3 and 4 graft samples other than those of plasmid
DNA from clones Q334 and F6, which served as an
internal positive control confirming the high efficiency of
amplification.

TCR sequences present in baseline and post-HSCT
samples are not found in the autologous CD34þ selected
HSC graft
In-frame TCR rearrangements from the HSC graft, as well
as from all pre-mobilization and post-HSCT peripheral
blood samples for MS-1, were then assessed to determine
whether persisting clones were detectable in the autologous
HSC graft. A total of 698 in-frame TCR sequences from
MS-1 CD4þ T-cell subset samples (pre-mobilization and
post-transplantation) were visually compared with the 37
in-frame rearrangements from the HSC graft. However,
none of the persisting TCR sequences detected in CD4þ T
cells from PBMCs at baseline (pre-) or post-HSCT were
found in the sequences obtained from the graft (Figure 3,
and data not shown).

Discussion

One aspect of the rationale for using autologous myelo-
ablative HSCT to treat autoimmune disease is the
opportunity to eradicate all mature T cells with myeloa-
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Figure 2 BIOMED-2 multiplex primers sensitively amplify TCR BC-BJ
rearrangements. PCR amplification conditions for BIOMED-2 multiplex
primers were optimized for multiplex primer tubes 1 and 2. (a) Control
plasmids containing in-frame TCR BC-BJ rearrangements (Q334 and F6)
were serially diluted 10-fold (10 000–1 copy template per reaction) and used
as template DNA to optimize PCR and TCR sequencing conditions. In-
frame TCR sequences were reliably obtained from amplicons from 1 to 10
copies template per reaction. (b) Validation of techniques to isolate low
numbers of T cells for positive-control ‘spike’ experiments. Cells were
serially diluted on a glass slide and 1, 5 and 10 cells were removed using a
fine gauge tip. The total number of cells intended to be transferred (goal)
was then plotted against the number of cells collected (actual) as counted
by a different individual. n¼ 6 replicates for each cell count. Error bars
show±s.d. (c) The indicated number of live TCR-positive T cells from
clone MS-10 were transferred into 1� 106 live TCR-negative cells. Cells
were then PCR amplified with BIOMED-2 multiplex primers and cloned
and sequenced as described. Representative amplicons obtained from MS-
10 PCR products by agarose gel electrophoresis are shown. In-frame TCR
rearrangements were recovered from PCR amplicons cloned from 1000,
100, 10, 5 and 1 T cells per reaction condition (see text).
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blative conditioning. It is therefore clinically relevant to
consider whether the reinfusion of T cells ‘contaminating’
the autologous hematopoietic graft could cause or con-
tribute to the persistence of individual CD4 and CD8 T-cell
clones (potentially including disease-mediating clones) after
autologous HSCT. Lymphocyte depletion can be achieved
by graft manipulations such as CD34þ cell selection, or
in vivo using anti-thymocyte globulin or monoclonal
antibodies. CD34 selection results in efficient depletion of
CD3þ T cells, which remain within the HSC autologous
graft only at low frequencies. In this study, we used state of
the art TCR sequencing methods to ascertain whether
individual T-cell clones that re-emerged or persisted post-
transplant in patients with MS who underwent HSCT had
originated from the autologous CD34-selected graft.

As aliquots of the HSC grafts were limited in size, we first
carried out PCR optimization experiments using positive-
control spike-in experiments on plasmids containing in-
frame TCR rearrangements to determine the minimum

number of sequences that must be present for detection by
TCR sequencing. Serial dilutions of the TCR-positive
plasmid DNA template down to 10 or fewer copies per
cloning reaction confirmed our ability to detect TCR
sequences with high sensitivity. Next, we tested the
optimized PCR conditions on live T-cell clones ‘spiked’
into a TCR-negative ‘background’ cell population to
closely mimic amplification and cloning conditions applic-
able to the HSC grafts, and to allow us to determine the
sensitivity of our methodologies in detecting viable T cells
of low number with intact genomic DNA from a
heterogeneous cell population. Even in the presence of a
single TCR-positive T cell, we were able to successfully
clone and sequence in-frame TCRs from the T-cell ‘spike,’
confirming the capabilities of our amplification and cloning
techniques to sensitively amplify TCR BV rearrangements
from low numbers of target cells.

Next, HSC graft samples were analyzed from all patients.
A total of 467 HSC-derived colonies were selected and
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sequenced for in-frame TCR rearrangements using
BIOMED-2 multiplex primers, from which a total of 37
in-frame TCR sequences were obtained from MS-1.
Remarkably none of the TCR sequences from the MS-1
graft were detected in any other samples from the patient,
suggesting that the clones contained in the graft were not
represented at high frequency in the peripheral blood either
before or after HSCT. Surprisingly, no TCR sequences
were amplified from the other three patients’ grafts in spite
of robust control TCR amplification. As we used a sensitive
methodology, and MS1 had the second lowest percentage
of T cells among the four grafts, further reassuring that the
sensitivity of our system was not the limiting factor, we
interpret the low yields as a consequence of the effects of
CY treatment (2 g/m2) used for HSC mobilization before
graft collection. CY is a potent alkylating agent that
induces DNA fragmentation and apoptosis in lymphocytes,
which have low levels of aldehyde dehydrogenase, the
enzyme that converts the active alkylating compound
phospharamide mustard into the inert compound carbox-
yphosphamide.14,15 Common protocols for the evaluation
of hematopoietic graft composition include flow cytometric
enumeration of CD3þ cells but do not assess their
apoptotic status. We hypothesize that T cells contained in
HSC grafts obtained with mobilization schemes not using
CY or other lymphotoxic agents may have greater
engraftment potential, and it would be important to test
this hypothesis in future studies.

Our results provide important first evidence against the
potential reintroduction of clonally expanded T cells from
within CY (þG-CSF)-mobilized, CD34-selected hemato-
poietic grafts. Two alternative explanations for the
persistence of these clones in the patients’ post-HSCT are:
(a) de novo rearrangement and selection of the clones post-
transplantation; or (b) survival of the pre-existing T clones
despite a myeloablative conditioning regimen. Although
persistent viral infections can exert selective pressure on
thymic generation of naive CD4þ cells post-transplant,16

de novo generation of identical TCR sequences is expected
to be rare (especially at the nucleotide level), given the vast
combinatorial diversity of TCR B chain rearrangements.17

Therefore, persistence of T-cell clones post-HSCT more
likely reflects their survival through the conditioning
chemoradiotherapy. This notion has implications concern-
ing the rationale for using maximally intensive myelo-
ablative conditioning regimens for treatment of autoim-
mune disease. In this context, if the goal is complete
immune ablation, CD34þ selection would be theoretically
appropriate so long as the graft represents the sole source
of carryover of mature lymphocytes. A study comparing
CD34-selected versus unmanipulated HSCT in rheumatoid
arthritis (RA) detected no differences in clinical out-
comes.18 However, the possibilities that incomplete im-
munoablative conditioning or an intrinsically poor
response to autologous HSCT in RA could render CD34
selection irrelevant could not be excluded. Several factors
contribute to determining chemo- and radioresistance of
lymphoid cells. These include cell-dependent factors such as
lineage, maturation and cell cycle status. In general, the
cytotoxicity of alkylating agents is greatest during the S
phase of the cell cycle, resulting in the more effective killing

of cells that are rapidly dividing compared with resting
cells. Such property has long been known and exploited for
therapeutic targeting of cancer cells. When the target is a
non-malignant autoimmune T-lymphocyte population and
the objective of cytotoxic chemotherapy is immunosup-
pressive conditioning, the T-cell state of activation needs to
be considered. Naive and, to a lesser extent, resting
(central) memory cells are more likely to survive cytotoxic
chemotherapy than activated memory/effector cells. This
differential susceptibility attenuates but does not eliminate
the concern of potential autoimmune disease recapitula-
tion. Strategies to minimize this risk may include dose
intensification (limited by toxicities), multiple immuno-
suppressive drugs with additive or synergistic effects (also
limited by toxicities) and in vivo lymphocyte depletion with
poly- or monoclonal antibodies. Interestingly, it has been
suggested that polyclonal anti-T-lymphocyte globulins
(ATGs) efficacy at preventing GVHD relies not only on
its capacity to deplete T cells but also on immunomodu-
latory properties.19 ATG (or alemtuzumab, which has also
shown immune modulating effects)20 has been included in
conditioning regimes of varying intensity used in clinical
trials of HSCT in MS, as recently discussed21 or reported.22

The approach and methodological improvements to
studying the human TCR repertoire described here could
facilitate further studies addressing how mobilization
schemes, graft manipulations, conditioning regimes and
in vivo T-cell depletion affect the carryover of mature T
cells in hematopoietic transplantation for autoimmune and
malignant disorders.
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